Gradient estimates for a nonlinear parabolic equation with diffusion on complete noncompact manifolds

Liang Zhao , Zongwei Ma

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 57 -66.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 57 -66. DOI: 10.1007/s11401-014-0876-2
Article

Gradient estimates for a nonlinear parabolic equation with diffusion on complete noncompact manifolds

Author information +
History +
PDF

Abstract

The authors obtain some gradient estimates for positive solutions to the following nonlinear parabolic equation: \frac{{\partial u}}{{\partial t}} = \Delta u - b(x,t)u^\sigma on complete noncompact manifolds with Ricci curvature bounded from below, where 0 < σ < 1 is a real constant, and b(x, t) is a function which is C 2 in the x-variable and C 1 in the t-variable.

Keywords

Gradient estimates / Positive solutions / Harnack inequality

Cite this article

Download citation ▾
Liang Zhao, Zongwei Ma. Gradient estimates for a nonlinear parabolic equation with diffusion on complete noncompact manifolds. Chinese Annals of Mathematics, Series B, 2015, 36(1): 57-66 DOI:10.1007/s11401-014-0876-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin T. Nonlinear Analysis on Manifolds, 1982, New York: Springer-Verlag

[2]

Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math., 1975, 28: 333-354

[3]

Hamilton R. A matrix Harnack estimate for the heat equation. Comm. Anal. Geom., 1993, 1: 113-126

[4]

Huang G Y, Li H Z. Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian, 2012

[5]

Li P, Yau S T. On the parabolic kernel of the Schrodinger operator. Acta Math., 1986, 156: 153-201

[6]

Wu J Y. Li-Yau type estimates for a nonlinear parabolic equation on complete manifolds. J. Math. Anal. Appl., 2010, 369: 400-407

[7]

Zhang J, Ma B Q. Gradient estimates for a nonlinear equation \Delta _f u + cu^{ - \alpha } = 0 on complete noncompact manifolds. Comm. Math., 2011, 19: 73-84

[8]

Zhu X B. Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds. Nonlinear Anal., 2011, 74: 5141-5146

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/