Dynamics of a function related to the primes

Ying Shi , Quanhui Yang

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 81 -90.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 81 -90. DOI: 10.1007/s11401-014-0874-4
Article

Dynamics of a function related to the primes

Author information +
History +
PDF

Abstract

Let n = p 1 p 2p k, where p i (1 ≤ ik) are primes in the descending order and are not all equal. Let Ωk(n) = P(p 1+p 2)P(p 2+p 3) ⋯ P(p k−1+p k)P(p k +p 1), where P(n) is the largest prime factor of n. Define w 0(n) = n and w i(n) = w(w i−1(n)) for all integers i ≥ 1. The smallest integer s for which there exists a positive integer t such that Ω k s(n) = Ω k s+t(n) is called the index of periodicity of n. The authors investigate the index of periodicity of n.

Keywords

Dynamics / The largest prime factor / Arithmetic function

Cite this article

Download citation ▾
Ying Shi, Quanhui Yang. Dynamics of a function related to the primes. Chinese Annals of Mathematics, Series B, 2015, 36(1): 81-90 DOI:10.1007/s11401-014-0874-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Y G, Shi Y. Dynamics of the w function and the Green-Tao theorem on arithmetic progressions in the primes. Proc. Amer. Math. Soc., 2008, 136: 2351-2357

[2]

Chen Y G, Shi Y. Distribution of primes and dynamics of the w function. J. Number Theory, 2008, 128: 2085-2090

[3]

Chen Y G, Shi Y, Wu J. Dynamics of Golding’s w-function. J. Number Theory, 2012, 132: 390-409

[4]

Goldring W. Dynamics of the w function and primes. J. Number Theory, 2006, 119: 86-98

[5]

Jia C H. On the inverse problem relative to dynamics of the w function. Sci. in China Ser. A, 2009, 52: 849-856

[6]

Shi Y. Dynamics of the arithmetic function Ωk. J. Math. Res. Exposition, 2008, 28: 886-890

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/