Bifurcation analysis of the multiple flips homoclinic orbit

Tiansi Zhang , Deming Zhu

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 91 -104.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 91 -104. DOI: 10.1007/s11401-014-0873-5
Article

Bifurcation analysis of the multiple flips homoclinic orbit

Author information +
History +
PDF

Abstract

A high-codimension homoclinic bifurcation is considered with one orbit flip and two inclination flips accompanied by resonant principal eigenvalues. A local active coordinate system in a small neighborhood of homoclinic orbit is introduced. By analysis of the bifurcation equation, the authors obtain the conditions when the original flip homoclinic orbit is kept or broken. The existence and the existence regions of several double periodic orbits and one triple periodic orbit bifurcations are proved. Moreover, the complicated homoclinic-doubling bifurcations are found and expressed approximately.

Keywords

Orbit flip / Inclination flips / Homoclinic orbit / Resonance

Cite this article

Download citation ▾
Tiansi Zhang, Deming Zhu. Bifurcation analysis of the multiple flips homoclinic orbit. Chinese Annals of Mathematics, Series B, 2015, 36(1): 91-104 DOI:10.1007/s11401-014-0873-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chow S N, Deng B, Fiedler B. Homoclinic bifurcation at resonant eigenvalues. J. Dyn. Diff. Equs., 1990, 2(2): 177-244

[2]

Sandstede B. Constructing dynamical systems having homoclinic bifurcation points of codimension two. J. Dyn. Diff. Equs., 1997, 9: 269-288

[3]

Morales C, Pacifico M. Inclination-flip homoclinic orbits arising from orbit-flip. Nonlinearity, 2001, 14: 379-393

[4]

Kisaka M, Kokubu H, Oka H. Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields. J. Dyn. Diff. Equs., 1993, 5(2): 305-357

[5]

Naudot V. Bifurcations Homoclines des Champes de Vecteurs en Dimension Trois, 1996, Dijon: l’Université de Bourgogne

[6]

Homburg A, Kokubu H, Naudot V. Homoclinic-doubling cascades. Arch. Ration. Mech. Anal., 2001, 160(3): 195-243

[7]

Homburg A J, Krauskopf B. Resonant homoclinic flip bifurcations. J. Dyn. Diff. Equs., 2000, 12(4): 807-850

[8]

Oldeman B, Krauskopf B, Champneys A. Numerical unfoldings of codimension-three resonant homoclinic flip bifurcations. Nonlinearity, 2001, 14: 597-621

[9]

Zhang T S, Zhu D M. Homoclinic bifurcation of orbit flip with resonant principal eigenvalues. Acta Math. Sini., Engl. Ser., 2006, 22(3): 855-864

[10]

Zhang T S, Zhu D M. Bifurcations of homoclinic orbit connecting two nonleading eigendirections. Int. J. Bifu. Chaos, 2007, 17(3): 823-836

[11]

Krupa M, Sandstede B, Szmolyan P. Fast and slow waves in the FitzHugh-Nagumoequation. J. Dyn. Diff. Equs., 1997, 133: 49-97

[12]

Feudel U, Neiman A, Pei X Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 2000, 10(1): 231-239

[13]

Champneys A, Kuznetsov Y A. Numerical detection and continuation of codimension-two homoclinic bifurcation. Int. J. Bifu. Chaos, 1994, 4: 785-822

[14]

Geng F J, Zhu D M. Bifurcations of generic heteroclinic loop accompanied by transcritical bifurcation. Int. J. Bifu. Chaos., 2008, 18: 1069-1083

[15]

Lu Q Y, Qiao Z Q, Zhang T S Heterodimensional cycle bifurcation with orbit-filp. Int. J. Bifu. Chaos., 2010, 20(2): 491-508

[16]

Liu X B. Homoclinic flip bifurcations accompanied by transcritical bifurcation. Chin. Ann. Math., 2011, 32B(6): 905-916

[17]

Zhu D M, Xia Z H. Bifurcation of heteroclinic loops. Science in China, Ser. A., 1998, 41(8): 837-848

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/