Bochner-Kodaira techniques on Kähler Finsler manifolds

Jinxiu Xiao , Chunhui Qiu , Tongde Zhong

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 125 -140.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 125 -140. DOI: 10.1007/s11401-014-0871-7
Article

Bochner-Kodaira techniques on Kähler Finsler manifolds

Author information +
History +
PDF

Abstract

A horizontal Hodge Laplacian operator ▭ H is defined for Hermitian holomorphic vector bundles over PTM on Kähler Finsler manifold, and the expression of ▭ H is obtained explicitly in terms of horizontal covariant derivatives of the Chern-Finsler connection. The vanishing theorem is obtained by using the \partial _\mathcal{H} \bar \partial _\mathcal{H} -method on Kähler Finsler manifolds.

Keywords

Kähler Finsler manifold / Horizontal Hodge Laplacian operator, Bochner-Kodaira technique

Cite this article

Download citation ▾
Jinxiu Xiao, Chunhui Qiu, Tongde Zhong. Bochner-Kodaira techniques on Kähler Finsler manifolds. Chinese Annals of Mathematics, Series B, 2015, 36(1): 125-140 DOI:10.1007/s11401-014-0871-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bochner S. Vector fields and Ricci curvature. Bull. Amer. Math. Soc., 1946, 52: 776-797

[2]

Bochner S. Curvature in Hermitian metric. Bull. Amer. Math. Soc., 1947, 53: 179-195

[3]

Bochner S. Curvature and Betti numbers, I, II. Ann. of Math., 1948, 49: 379-390

[4]

Yano K, Bochner S. Curvature and Betti Numbers, 1953, Princeton: Princeton Univ. Press

[5]

Wu H H. The Bochner Technique in Differential Geometry, 1988, London, Paris: Harwood Academic Publishers

[6]

Morrow J, Kodaira K. Complex Manifold, Holt, 1971, New York: Rinehart and Winston

[7]

Griffiths P, Harris J. Principles of Algebraic Geometry, 1978, New York: John Wiley and Sons Inc.

[8]

Kobayashi S. Differential Geometry of Complex Vector Bundles, 1987, New Jersey: Princeton Univ. Press

[9]

Kodaira K. On a differential-geometric method in the theory of analytic stacks. Proc. Nat. Acad. Sci., 1953, 39: 1268-1273

[10]

Siu Y T. The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds. Ann. of Math., 1980, 112: 73-111

[11]

Siu Y T. Complex analyticity of harmonic maps, vanishing theorems and Lefchetz theorems. J. Diff. Geom., 1982, 17: 55-138

[12]

Bao D, Chern S S, Shen Z. An Introducetion to Riemann-Finsler Geometry, 2000, New York: Springer-Verlag

[13]

Chern S S. Finsler geometry is just Riemannian geometry without the quadratic restriction. AMS Notices, 1996, 43(9): 959-963

[14]

Bao D, Chern S S, Shen Z. Finsler Geometry (Proceedings of the Joint Summer Research Conference on Finsler Geometry, July 16–20, 1995, Seattle, Washington), 1996, Providence, RI: A. M. S.

[15]

Shen Z. Lectures on Finsler Geometry, 2001, Singapore: World Scientific Publishers

[16]

Abate M, Patrizio G. Finsler metric-A global approach, 1994, Berlin: Springer- Verlag

[17]

Wong P M. A survey of complex Finsler geometry. Adv. Stud. Pure Math., 2007, 48: 375-433

[18]

Chen B, Shen Y. Kähler Finsler metric are actually strongly Kähler. Chin. Ann. Math., 2009, 30B(2): 173-178

[19]

Bao D, Lackey B. A Hodge decomposition theorem for Finsler spaces. C. R. Acad. Sci. Paris, 1996, 323(1): 51-56

[20]

Antonelli P, Bao D. Finslerian Laplacians and Applications, 1998, Dordrecht: Kluwer Academic Publishers

[21]

Zhong C, Zhong T. Horizontal α-Laplacian on complex Finsler manifolds. Science in China, Ser. A, 2005, 48(supp.): 377-391

[22]

Zhong C, Zhong T. Hodge decomposition theorem on strongly Kähler Finsler manifolds. Science in China, Ser. A, 2006, 49(11): 1696-1714

[23]

Zhong C. Laplacians on the holomorphic tangent bundles of a Kähler manifolds. Science in China, Ser. A, 2009, 52(12): 2841-2854

[24]

Aikou T. On complex Finsler manifolds. Rep. Fac. Kagoshima Univ., 1991, 35: 9-25

[25]

Xiao J, Zhong T, Qiu C. Bochner technique in Strongly Kähler Finsler manifolds. Acta Math. Sci., 2010, 30B(1): 89-106

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/