A constructive proof of Beurling-Lax theorem

Qiuhui Chen , Tao Qian

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 141 -146.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 141 -146. DOI: 10.1007/s11401-014-0870-8
Article

A constructive proof of Beurling-Lax theorem

Author information +
History +
PDF

Abstract

This paper deals with an alternative proof of Beurling-Lax theorem by adopting a constructive approach instead of the isomorphism technique which was used in the original proof.

Keywords

Beurling-Lax theorem / Shift operator / Inner function

Cite this article

Download citation ▾
Qiuhui Chen, Tao Qian. A constructive proof of Beurling-Lax theorem. Chinese Annals of Mathematics, Series B, 2015, 36(1): 141-146 DOI:10.1007/s11401-014-0870-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aleksandrov A B. Embedding theorem for coinvariant subspaces of the shift operator. Zap. Nauchn. Sem. S.-Peterburg, Otel. Math. Inst. Steklov, 1999, 262: 5-48

[2]

Beurling A. On two problems concerning linear transformations in Hilbert space. Acta Math., 1949, 81: 239-255

[3]

Cima J, Ross W. The Backward Shift on the Hardy Space, American Mathematical Society, Providence, RI, 2000

[4]

Douglas R G, Shapiro H S, Shields A L. Cyclic vectors and invariant subspace for the backward shift invariant subspace. Annales de l’Institut Fourier, 1970, 20: 37-76

[5]

Hoffman K. Banach Spaces of Analytic Functions, 1962, Englewood Cliffs, New Jersey: Prentice-Hall

[6]

Jaming P. Phase retrieval techniques for radar ambiguity problems. Journal of Fourier Analysis and Applications, 1999, 5: 309-329

[7]

Lax P D. Translation invariant spaces. Acta Mathematic, 1959, 101: 163-178

[8]

Qian T, Chen Q, Tan L. The rational orthogonal systems are Schauder bases. Complex Variable and Elliptic Equations, 2013

[9]

Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces, 1975, Princeton, New Jersey: Princeton University Press

[10]

Tan L, Qian T. Backward shift invariant subspace of band-limited signals and generalizations of Titchmarsh’s theorem, 2012

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/