Nonlocal symmetries and explicit solutions of the Boussinesq equation

Xiangpeng Xin , Junchao Chen , Yong Chen

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 841 -856.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 841 -856. DOI: 10.1007/s11401-014-0868-2
Article

Nonlocal symmetries and explicit solutions of the Boussinesq equation

Author information +
History +
PDF

Abstract

The nonlocal symmetry of the Boussinesq equation is obtained from the known Lax pair. The explicit analytic interaction solutions between solitary waves and cnoidal waves are obtained through the localization procedure of nonlocal symmetry. Some other types of solutions, such as rational solutions and error function solutions, are given by using the fourth Painlevé equation with special values of the parameters. For some interesting solutions, the figures are given out to show their properties.

Keywords

Nonlocal symmetry / Lax pair / Prolonged system / Explicit solution

Cite this article

Download citation ▾
Xiangpeng Xin, Junchao Chen, Yong Chen. Nonlocal symmetries and explicit solutions of the Boussinesq equation. Chinese Annals of Mathematics, Series B, 2014, 35(6): 841-856 DOI:10.1007/s11401-014-0868-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lie S. Über die Integration durch bestimmte integrale von einer Klasse linearer partieller differentialgleichungen. Arch. Math., 1881, 6: 328-368

[2]

Ovsiannikov L V. Group Analysis of Differential Equations, 1982, New York: Academic

[3]

Olver P J. Applications of Lie Groups to Differential Equations, 1986, Berlin: Springer-Verlag

[4]

Ibragimov N H. Transformation Groups Applied to Mathematical Physics Boston, Reidel, MA, 1985

[5]

Bluman G W, Kumei S. Symmetries and Differential Equations, 1989, New York: Springer-Verlag

[6]

Dong Z Z, Huang F, Chen Y. Symmetry reductions and exact solutions of the two-layer model in atmosphere. Z. Naturforsch, 2011, 66: 75-86

[7]

Hu X R, Huang F, Chen Y. Symmetry reductions and exact solutions of the (2+1)-dimensional Navier-Stokes equations. Z. Naturforsch, 2010, 65: 1-7

[8]

Chen Y, Dong Z Z. Symmetry reduction and exact solutions of the generalized Nizhnik-Novikov-Veselov equation. Nonlinear Anal., 2009, 71: 810-817

[9]

Temuer C L, Eerdun B H, Xia T C. Nonclassical symmetry of the wave equation with source. Chin. Ann. Math., 2012, 33A(2): 193-204

[10]

Xia T C, Zhang D P, Temuer C L. Nonclassical symmetry classification of the wave equation with a nonlinear source term. Acta Math. Sci., 2012, 32: 941-949

[11]

Bluman G W, Cheviakov A F, Anco S C. Applications of Symmetry Methods to Partial Differential Equations, 2010, New York: Springer-Verlag

[12]

Bluman G W, Cheviakov A F. Framework for potential systems and nonlocal symmetries: algorithmic approach. J. Math. Phys., 2005, 46: 1-19

[13]

Bluman G W, Reid G I, Kumei S. New classes of Symmetries for partial differential equations. J. Math. Phys., 1988, 29(4): 806-811

[14]

Galas F. New nonlocal symmetries with pseudopotentials. J. Phys. A: Math. Gen., 1992, 25: L981-L986

[15]

Lou S Y, Hu X R, Chen Y. Nonlocal symmetries related to Bäcklund transformation and their applications. J. Phys. A: Math. Theor., 2012, 45: 155209-155209

[16]

Hu X R, Lou S Y, Chen Y. Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation. Phys. Rev. E, 2012, 85: 056607-1-8

[17]

Guthrie G A. More non-local symmetries of the KdV equation. J. Phys. A: Math. Gen., 1993, 26: L905-L908

[18]

Akhatov I S, Gazizov R K. Nonlocal symmetries: a heuristic approach. J. Math. Sci., 1991, 55: 1401-1450

[19]

Lou S Y. Conformal invariance and integrable models. J. Phys. A: Math. Phys., 1997, 30: 4803-4813

[20]

Lou S Y, Hu X B. Non-local symmetries via Darboux transformations. J. Phys. A: Math. Gen., 1997, 30: L95-L100

[21]

Xin X P, Chen Y. A method to construct the high order nonlocal symmetries. Chin. Phys. Lett., 2013, 30: 100202 1-4

[22]

Edelen D G. Isovector Methods for Equations of Balance with Programs for Assistance in Operator Calculations and Exposition of Practical Topics of Eaterior Calculus, Alphen aam den Rijn: Sijthoff and Noordhoff, 1980

[23]

Krasilshchik I S, Vinogradov A. Nonlocal symmetries and the theory of coverings: an addendum to A. M. Vinogradov’s ‘local symmetries and conservation laws’. Acta Appl. Math., 1984, 2: 79-96

[24]

Lou S Y, Hu X B. Nonlocal Lie-Bäcklund symmetries and Olver symmetries of the KdV equation. Chin. Phys. Lett., 1993, 10: 577-580

[25]

Fan E G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A, 2000, 277: 212-218

[26]

Fan E G. Two new applications of the homogeneous balance method. Phys. Lett. A, 2000, 265: 353-357

[27]

Clarkson P A, Kruskal M D. New similarity reductions of the Boussinesq equation. J. Math. Phys., 1989, 30: 2201-2213

[28]

Li C X, Ma W X, Liu X J, Zeng Y B. Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons. Inverse Prob., 2007, 23: 279-296

[29]

Shin H J. Soliton on a cnoidal wave background in the coupled nonlinear Schrödinger equation. J. Phys. A: Math. Gen., 2004, 37: 8017-8030

[30]

Hu X B, Lou S Y. Nonlocal symmetries of nonlinear integrable models. Proceedings of Institute of Mathematics of NAS of Ukraine, 2000, 30: 120-126

[31]

Shen S F, Qu C Z, Jin Y Y, Ji L N. Maximal dimension of invariant subspaces to systems of nonlinear evolution equations. Chin. Ann. Math., 2012, 33(B2): 161-178

[32]

Dong Z Z, Chen Y, Kong D X, Wang Z G. Symmetry reduction and exact solutions of a hyperbolic Monge-Ampere equation. Chin. Ann. Math., 2012, 33(B2): 309-316

[33]

Clarkson P A. The fourth Painlevé transcendent, 2008

[34]

Clarkson P A. The fourth Painlevé equation and associated special polynomials. J. Math. Phys., 2003, 44: 5350-5374

[35]

Airault H. Rational solutions of Painlevé equations. Stud. Appl. Math., 1979, 61: 31-53

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/