Existence of generalized heteroclinic solutions of the coupled Schrödinger system under a small perturbation

Shengfu Deng , Boling Guo , Tingchun Wang

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 857 -872.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 857 -872. DOI: 10.1007/s11401-014-0867-3
Article

Existence of generalized heteroclinic solutions of the coupled Schrödinger system under a small perturbation

Author information +
History +
PDF

Abstract

The following coupled Schrödinger system with a small perturbation $\begin{array}{*{20}c} {u_{xx} + u - u^3 + \beta uv^2 + \varepsilon f(\varepsilon ,u,u_x ,v,v_x ) = 0 in \mathbb{R},} \\ {v_{xx} - v + v^3 + \beta u^2 v + \varepsilon g(\varepsilon ,u,u_x ,v,v_x ) = 0 in \mathbb{R}} \\ \end{array}$ is considered, where β and are small parameters. The whole system has a periodic solution with the aid of a Fourier series expansion technique, and its dominant system has a heteroclinic solution. Then adjusting some appropriate constants and applying the fixed point theorem and the perturbation method yield that this heteroclinic solution deforms to a heteroclinic solution exponentially approaching the obtained periodic solution (called the generalized heteroclinic solution thereafter).

Keywords

Coupled Schrödinger system / Heteroclinic solutions / Reversibility

Cite this article

Download citation ▾
Shengfu Deng, Boling Guo, Tingchun Wang. Existence of generalized heteroclinic solutions of the coupled Schrödinger system under a small perturbation. Chinese Annals of Mathematics, Series B, 2014, 35(6): 857-872 DOI:10.1007/s11401-014-0867-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosetti A, Malchiodi A, Ni W M. Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, Part I. Commun. Math. Phys., 2003, 235: 427-466

[2]

Ambrosetti A, Malchiodi A, Secchi S. Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Rat. Mech. Anal., 2001, 159: 253-271

[3]

Belmonte-Beitia J. A note on radial nonlinear Schrödinger systems with nonlinearity spatially modulated. Electron. J. Diff. Equ., 2008, 148: 1-6

[4]

Benney D J, Newell A C. The propagation of nonlinear wave envelopes. J. Math. and Phys., 1967, 46: 133-139

[5]

Bernard P. Homoclinic orbit to a center manifold. Calc. Var. Partial Differential Equations, 2003, 17: 121-157

[6]

Brezzi F, Markowich P A. The three-dimensional Wigner-Poisson problem: Existence, uniqueness and approximation. Math. Mod. Meth. Appl. Sci., 1991, 14: 35-61

[7]

Champneys A R. Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. Phys. D, 1998, 112: 158-186

[8]

Champneys A R. Homoclinic orbits in reversible systems II: Multi-bumps and saddle-centres. CWI. Quart., 1999, 12: 185-212

[9]

Champneys A R, Malomed B A, Yang J, Kaup D J. Embedded solitons: Solitary waves in resonance with the linear spectrum. Phys. D, 2001, 152–153: 340-354

[10]

Chen X, Lin T, Wei J. Blowup and solitary wave solutions with ring profiles of two-component nonlinear Schrödinger systems. Phys. D, 2010, 239: 613-616

[11]

Coti Zelati V, Macrì M. Existence of homoclinic solutions to periodic orbits in a center manifold. J. Differential Equations, 2004, 202: 158-182

[12]

Coti Zelati V, Macrì M. Multibump solutions homoclinic to periodic orbits of large energy in a centre manifold. Nonlinearity, 2005, 18: 2409-2445

[13]

Coti Zelati V, Macrì M. Homoclinic solutions to invariant tori in a center manifold. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2008, 19: 103-134

[14]

Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys., 1997, 71: 463-512

[15]

Deng S, Guo B. Generalized homoclinic solutions of a coupled Schrödinger system under a small perturbation. J. Dyn. Diff. Equat., 2012, 24: 761-776

[16]

Dodd R K, Eilbeck J C, Gibbon J D, Morris H C. Solitons and Nonlinear Wave Equations, 1982, New York: Academic Press

[17]

Fedele R, Miele G, Palumbo L, Vaccaro V G. Thermal wave model for nonlinear longitudinal dynamics in particle accelerators. Phys. Lett. A, 1993, 173: 407-413

[18]

Fibich G, Gavish N, Wang X P. Singular ring solutions of critical and supercritical nonlinear Schrödinger equations. Phys. D, 2007, 231: 55-86

[19]

Floer A, Weinstein A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal., 1986, 69: 397-408

[20]

Hasegawa A. Optical Solitons in Fibers, 1989, Berlin: Springer-Verlag

[21]

Kielhöfer H. Bifurcation Theory: An Introduction with Applications to PDEs, 2003, New York: Springer-Verlag

[22]

Kivshar Y, Agrawal G P. Optical Solitons: From Fibers to Photonic Crystals, 2003, San Diego: Academic Press

[23]

Lerman L M. Hamiltonian systems with a separatrix loop of a saddle-center. Selecta. Math. Sov., 1991, 10: 297-306

[24]

Mesentsev V K, Turitsyn S K. Stability of vector solitons in optical fibers. Opt. Lett., 1992, I7: 1497-1500

[25]

Mielke A, Holmes P, O’Reilly O. Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center. J. Dyn. Diff. Equat., 1992, 4: 95-126

[26]

Noris B, Ramos M. Existence and bounds of positive solutions for a nonlinear Schrödinger system. Proc. Amer. Math. Soc., 2010, 138: 1681-1692

[27]

Noris B, Trvares H, Terracini S, Verzini G. Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm. Pure. Appl. Math., 2010, 6: 267-302

[28]

Oh Y-G. On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials. Commun. Math. Phys., 1990, 131: 223-253

[29]

Peletier L A, Rodrígues J A. Homoclinic orbits to a saddle-center in a fourth-order differential equation. J. Differential Equations, 2004, 203: 185-215

[30]

Pelinovsky D E, Yang J. Internal oscilations and radiation damping of vector solitions. Stud. Appl. Math., 2000, 105: 245-276

[31]

Pelinovsky D E, Yang J. Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations. Stud. Appl. Math., 2005, 115: 109-137

[32]

Ragazzo C G. Irregular dynamics and homoclinic orbits to Hamiltonian saddle-centers. Comm. Pure. App. Math., 1997, 50: 105-147

[33]

Rosales J L, Sánchez-Gómez J L. Nonlinear Schödinger equation coming from the action of the particles gravitational field on the quantum potential. Phys. Lett. A, 1992, 66: 111-115

[34]

Scott A. Nonlinear Science: Emergence and Dynamics of Coherent Structures, 1999, Oxford: Oxford University Press

[35]

Shatah J, Zeng C. Orbits homoclinic to center manifolds of conservative PDEs. Nonlinearity, 2003, 16: 591-614

[36]

Wagenknecht T, Champneys A R. When gap solitons become embedded solitons: a generic unfolding. Phys. D, 2003, 177: 50-70

[37]

Walter W. Gewöhnliche Differentialgleichungen, 1992, New York, Berlin: Springer-Verlag

[38]

Yagasaki K. Homoclinic and heteroclinic orbits to invariant tori in multi-degree-of-freedom Hamiltonian systems with saddle-centres. Nonlinearity, 2005, 18: 1331-1350

[39]

Yang J. Classification of the solitary waves in coupled nonlinear Schröinger equations. Phys. D, 1997, 108: 92-112

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/