Symplectic group actions on homotopy elliptic surfaces

Yulai Wu , Ximin Liu

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 873 -884.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 873 -884. DOI: 10.1007/s11401-014-0866-4
Article

Symplectic group actions on homotopy elliptic surfaces

Author information +
History +
PDF

Abstract

In this paper, the authors study the homologically trivial symplectic group actions on homotopy elliptic surfaces E(n) and get some rigidity results.

Keywords

Symplectic action / Homologically trivial / g-Signature theorem / Fixed-point data

Cite this article

Download citation ▾
Yulai Wu, Ximin Liu. Symplectic group actions on homotopy elliptic surfaces. Chinese Annals of Mathematics, Series B, 2014, 35(6): 873-884 DOI:10.1007/s11401-014-0866-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atiyah M F, Bott R. A Lefschetz fixed point formula for elliptic complexes: II. Application. Ann. of Math., 1968, 88: 451-491

[2]

Barth W, Peter C, Van de Ven A. Compact Complex Surfaces, 1984, Berlin, Heidelberg, New York, Tokyo: Springer-Verlag

[3]

Chen W. Group actions on 4-manifolds: Some recent results and open questions. Proceedings of 13th Gökova Geometry-Topology Conference, 2009 1-21

[4]

Chen W, Kwasik S. Symplectic symmetries of 4-manifolds. Topology, 2007, 46(2): 103-128

[5]

Edmonds A L. Construction of group actions on four-manifold. Trans. Amer. Math. Soc., 1987, 299: 155-170

[6]

Edmonds, A. L., A survey of group actions on 4-manifolds, arXiv: 0907.0454.

[7]

Edmonds A L, Ewing J H. Realizing forms and fixed point data in dimension four. Amer. J. Math., 1992, 114: 1103-1126

[8]

Fintushel R, Stern R. Knots, links and 4-manifolds. Invent. Math., 1998, 134: 363-400

[9]

Gompf R E, Stipsicz A I. 4-Manifolds and Kirby Calculus, 1999, Providence, RI: Amer. Math. Soc.

[10]

Gordon C McA. On the g-signature theorem in dimension four. A la Recherche de la Topologie Perdue, Progress in Math., 1986, 62: 159-180

[11]

Hirzebruch F, Zagier D. The Atiyah-Singer Theorem and Elementary Number Theory, 1974

[12]

Kwasik S, Schultz R. Homological properties of periodic homeomorphisms of 4-manifolds. Duke Math. J., 1989, 58: 241-250

[13]

Liu X, Nakamura N. Pseudofree $\tfrac{Z}{3}$-actions on K3 surfaces. Proc. Amer. Math. Soc., 2007, 135(3): 903-910

[14]

Liu X, Nakamura N. Nonsmoothable group actions on elliptic surfaces. Topol. Appl., 2008, 155: 946-964

[15]

Matumoto T. Homologically trivial smooth involutions on K3 surfaces, Aspects of Low-dimensional Manifolds. Advanced Studies in Pure Mathematics, 1992, 20: 365-376

[16]

McCooey M. Symmetry groups of four-manifolds. Topology, 2002, 41(4): 835-851

[17]

Orlik P. Seifert manifolds, 1972, Berlin, Heidelberg, New York: Springer-Verlag

[18]

Peters C A M. On automorphisms of compact Kähler surfaces, 1979, Angers: Algebraic Geometry 249-267

[19]

Ruberman D. Involutions on spin 4-manifolds. Proc. Aemr. Math. Soc., 1995, 123(2): 593-596

[20]

Taubes C. The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett., 1994, 1: 809-822

[21]

Taubes C. SW ⇒ Gr: From the Seiberg-Witten equations to pseudohollomorphic curves. J. Amer. Math. Soc., 1996, 9: 845-918

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/