On nearly SS-embedded subgroups of finite groups

Lijun Huo , Wenbin Guo , Alexander A. Makhnev

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 885 -894.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 885 -894. DOI: 10.1007/s11401-014-0865-5
Article

On nearly SS-embedded subgroups of finite groups

Author information +
History +
PDF

Abstract

Let H be a subgroup of a finite group G. H is nearly SS-embedded in G if there exists an S-quasinormal subgroup K of G, such that HK is S-quasinormal in G and HKH seG, where H seG is the subgroup of H, generated by all those subgroups of H which are S-quasinormally embedded in G. In this paper, the authors investigate the influence of nearly SS-embedded subgroups on the structure of finite groups.

Keywords

S-quasinormal subgroup / Nearly SS-embedded subgroup / Sylow subgroup / p-nilpotent group / Supersolvable group

Cite this article

Download citation ▾
Lijun Huo, Wenbin Guo, Alexander A. Makhnev. On nearly SS-embedded subgroups of finite groups. Chinese Annals of Mathematics, Series B, 2014, 35(6): 885-894 DOI:10.1007/s11401-014-0865-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Assad M, Heliel A A. On S-quasinormally embedded subgroups of finite groups. J. Pure Appl. Algebra, 2001, 165: 129-135

[2]

Ballester-Bolinches A, Pedraza-Aguilera M C. Sufficient conditions for supersolubility of finite groups. J. Pure Appl. Algebra, 1998, 127: 113-118

[3]

Deskins W E. On quasinormal subgroups of finite groups. Math. Z., 1963, 82: 125-132

[4]

Doerk K, Hawkes T. Finite Solvable Groups, 1992, New York: Walter de Gruyter

[5]

Gorenstein D. Finite Groups, 1968, New York, Evanston, London: Harper and Row Publishers

[6]

Guo W. The Theory of Class of Groups, 2000, Beijing, New York, Dordrecht, Boston, London: Science Press-Kluwer Academic Publishers

[7]

Guo W, Lu Y, Niu W. s-embedded subgroups of finite groups. Algebra and Logic, 2010, 49(4): 293-304

[8]

Guo W, Shum K P, Skiba A N. On solubility and supersolubility of some classes of finite groups. Sci. China Ser. A, 2009, 52: 272-286

[9]

Guo W, Skiba A N. Finite groups with given s-embedded and n-embedded subgroups. J. Algebra, 2009, 321: 2843-2860

[10]

Guo W, Skiba A N, Yang N. SE-supplemented subgroups of finite groups. Rend. Sem. Mat. Univ. Padova, 2013, 129: 245-263

[11]

Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups. Arch. Math., 2003, 80: 561-569

[12]

Huppert B. Endliche Gruppen I, 1967, Berlin, Heidelberg, New York: Springer-Verlag

[13]

Kegel O. Sylow-Gruppen and subnormalteiler endlicher gruppen. Math. Z., 1962, 78: 205-221

[14]

Li J, Chen G, Chen R. On weakly s-embedded subgroups of finite groups. Sci. China Math., 2011, 54: 1899-1908

[15]

Li S, Li Y. On S-quasinormal and c-normal subgroups of a finite group. Czechoslovak Math. J., 2008, 58(133): 1083-1095

[16]

Miao L. On weakly s-permutable subgroups of finite groups. Bull. Braz. Math. Soc. New Series, 2010, 41(2): 223-235

[17]

Robinson D J S. A Course in Theory of Group, 1982, New York: Spinger-Verlag

[18]

Schmid P. Subgroups permutable with all Sylow subgroups. J. Algebra, 1998, 207: 285-293

[19]

Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Israel Journal of Mathematics, 1980, 35: 210-214

[20]

Thompson J G. Normal p-complements for finite groups. J. Algebra, 1964, 1: 43-46

[21]

Wang Y. c-normality of groups and its properties. J. Algebra, 1996, 180: 954-965

[22]

Wang Y, Guo W. Nearly s-normality of groups and its properties. Comm. Algebra, 2010, 38: 3821-3836

[23]

Wielandt H. Subnormal Subgroups and Permutation Groups, 1971, Columbus, Ohio: Lectures Given at the Ohio State University

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/