Curvature estimates for the level sets of solutions to the Monge-Ampère equation detD 2 u = 1

Chuanqiang Chen , Xinan Ma , Shujun Shi

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 895 -906.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 895 -906. DOI: 10.1007/s11401-014-0864-6
Article

Curvature estimates for the level sets of solutions to the Monge-Ampère equation detD 2 u = 1

Author information +
History +
PDF

Abstract

For the Monge-Ampère equation detD 2 u = 1, the authors find new auxiliary curvature functions which attain their respective maxima on the boundary. Moreover, the upper bounded estimates for the Gauss curvature and the mean curvature of the level sets for the solution to this equation are obtained.

Keywords

Curvature estimates / Level sets / Monge-Ampère equation

Cite this article

Download citation ▾
Chuanqiang Chen, Xinan Ma, Shujun Shi. Curvature estimates for the level sets of solutions to the Monge-Ampère equation detD 2 u = 1. Chinese Annals of Mathematics, Series B, 2014, 35(6): 895-906 DOI:10.1007/s11401-014-0864-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anedda C, Porru G. Problems on the Monge-Ampère equation in the plane. Contemporary Math., 2006, 400: 899-916

[2]

Chang S Y A, Ma X N, Yang P. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete Contin. Dyn. Syst., 2010, 28(3): 1151-1164

[3]

Chen C, Shi S. Curvature estimates for the level sets of spatial quasiconcave solutions to a class of parabolic equations. Sci. China Math., 2011, 54(10): 2063-2080

[4]

Guan P, Xu L. Convexity estimates for level sets of quasiconcave solutions to fully nonlinear elliptic equations. J. Reine Angew. Math., 2013, 680: 41-67

[5]

Gutiérrez C E. The Monge-Ampère equation, 2001, Boston: Birkhäser

[6]

Hardy G H, Littlewood J E, Pólya G. Inequalities, 1988, Cambridge: Cambridge University Press

[7]

Hong J, Huang G, Wang W. Existence of global smooth solutions to Dirichlet problem for degenerate elliptic Monge-Ampère equations. Comm. Part. Diff. Eq., 2011, 36: 635-656

[8]

Jost J, Ma X N, Ou Q. Curvature estimates in dimensions 2 and 3 for the level sets of p-harmonic functions in convex rings. Trans. Amer. Math. Soc., 2012, 364: 4605-4627

[9]

Longinetti M. Convexity of the level lines of harmonic functions. Boll. Un. Mat. Ital. A, 1983, 6: 71-75

[10]

Ma X N. Some estimates for Monge-Ampère equations in two dimensions, 1998

[11]

Ma X N, Ou Q, Zhang W. Gaussian curvature estimates for the convex level sets of p-harmonic functions. Comm. Pure Appl. Math., 2010, 63: 935-971

[12]

Trudinger N S. On new isoperimetric inequalities and symmetrization. J. Reine Angew. Math., 1997, 488: 203-220

[13]

Trudinger N S, Wang X J. The Monge-Ampère equation and its geometric application. Handbook of Geometric Analysis, Vol. I, 2008, Beijing: Higher Euducation Press 467-524

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/