Schur convexity for two classes of symmetric functions and their applications

Mingbao Sun , Nanbo Chen , Songhua Li , Yinghui Zhang

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 969 -990.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (6) : 969 -990. DOI: 10.1007/s11401-014-0860-x
Article

Schur convexity for two classes of symmetric functions and their applications

Author information +
History +
PDF

Abstract

For x = (x 1, x 2, ⋯, x n) ∈ ℝ+ n ∪ ℝ n, the symmetric functions F n(x, r) and G n(x, r) are defined by $F_n (x,r) = F_n (x_1 ,x_2 , \cdots ,x_n ;r) = \sum\limits_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }}{{x_{i_j } }}} }$ and $G_n (x,r) = G_n (x_1 ,x_2 , \cdots ,x_n ;r) = \sum\limits_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - x_{i_j } }}{{x_{i_j } }}} } ,$ respectively, where r = 1, 2, ⋯, n, and i 1, i 2, ⋯, i n are positive integers. In this paper, the Schur convexity of F n(x, r) and G n(x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan’s inequality, and give a generalization of Safta’s conjecture in the n-dimensional space and others.

Keywords

Symmetric function / Schur convexity / Inequality

Cite this article

Download citation ▾
Mingbao Sun, Nanbo Chen, Songhua Li, Yinghui Zhang. Schur convexity for two classes of symmetric functions and their applications. Chinese Annals of Mathematics, Series B, 2014, 35(6): 969-990 DOI:10.1007/s11401-014-0860-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schur I. Uber eine klasse von mittelbildungen mit anwendungen auf der determinantentheorie. Sitzungsberichte der Berliner Mathematischen Gesellschaft, 1923, 22: 9-20

[2]

Wang B Y. Foundations of Majorization Inequalities, 1990, Beijing: Beijing Normal Univ. Press

[3]

Guan K. Some properties of a class of symmetric functions. J. Math. Anal. Appl., 2007, 336(1): 70-80

[4]

Shi H N. Schur-convex functions related to Hadamard-type inequalities. J. Math. Inequal., 2007, 1(1): 127-136

[5]

Stepniak C. An effective characterization of Schur-convex functions with applications. J. Convex Anal., 2007, 14(1): 103-108

[6]

Zhang X M. Schur-convex functions and isoperimetric inequalities. Proc. Amer. Math. Soc., 1998, 126(2): 461-470

[7]

Chan N N. Schur-convexity for A-optimal designs. J. Math. Anal. Appl., 1987, 122(1): 1-6

[8]

Guan K Z. The Hamy symmetric function and its generalization. Math. Inequal. Appl., 2006, 9(4): 797-805

[9]

Guan K Z. A class of symmetric functions for multiplicatively convex function. Math. Inequal. Appl., 2007, 10(4): 745-753

[10]

Guan K Z. Schur-convexity of the complete symmetric function. Math. Inequal. Appl., 2006, 9(4): 567-576

[11]

Guan K Z, Guan R. Some properties of a generalized Hamy symmetric function and its applications. J. Math. Anal. Appl., 2011, 376(2): 494-505

[12]

Jiang W D. Some properties of dual form of the Hamy’s symmetric function. J. Math. Inequal., 2007, 1(1): 117-125

[13]

Qi F, Sándor J, Dragomir S S, Sofo A. Notes on the Schur-convexity of the extended mean values. Taiwanese J. Math., 2005, 9(3): 411-420

[14]

Stepniak C. Stochastic ordering and Schur-convex functions in comparison of linear experiments. Metrika., 1989, 36(5): 291-298

[15]

Hwang F K, Rothblum U G. Partition-optimization with Schur convex sum objective functions. SIAM J. Discrete Math., 2004, 18(3): 512-524

[16]

Constantine G M. Schur convex functions on the spectra of graphs. Discrete Math., 1983, 45(2–3): 181-188

[17]

Merkle M. Convexity, Schur-convexity and bounds for the gamma function involving the digamma function. Rocky Mountain J. Math., 1998, 28(3): 1053-1066

[18]

Hwang F K, Rothblum U G, Shepp L. Monotone optimal multipartitions using Schur convexity with respect to partial orders. SIAM J. Discrete Math., 1993, 6(4): 533-547

[19]

Hardy G H, Littlewood J E, Polya G. Some simple inequalities satisfied by convex functions. Messenger of Mathematics, 1929, 58: 145-152

[20]

Chu Y M, Xia W F, Zhao T H. Schur convexity for a class of symmetric functions. Sci. China Math., 2010, 53(2): 465-474

[21]

Xia W F, Chu Y M. On Schur convexity of some symmetric functions. J. Inequal. Appl., 2010

[22]

Xia W F, Chu Y M. Certain properties for a class of symmetric functions with applications. International Journal of Modern Mathematics, 2010, 5(3): 263-274

[23]

Xia W F, Wang G D, Chu Y M. Schur convexity and inequalities for a class of symmetric functions. Int. J. Pure and Appl. Math., 2010, 58(4): 435-452

[24]

Chu Y M, Xia W F, Zhang X H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivariate Anal., 2012, 105(1): 412-421

[25]

Bullen P S. A Dictionary of Inequalities, 1998, Harlow: Longman

[26]

Beckenbach E F, Bellman R. Inequalities, 1961, Berlin: Springer-Verlag

[27]

Mitrinović D S, Pečarić J E, Volenec V. Recent Advances in Geometric Inequalities, 1989, Dordrecht: Kluwer Academic Publishers Group

[28]

Safta I. Problem C: 14. Gaz. Mat., 1981, 86: 224

[29]

Marshall A W, Olkin I. Inequalities: theory of majorization and its applications, 1979, New York: Academic Press

[30]

Bullen P S. Handbook of Means and Their Inequalities, 2003, Dordrecht: Kluwer Academic Publishers Group

[31]

Mitrinović D S. Analytic Inequalities, 1970, New York: Springer-Verlag

[32]

Wu S H. Generalization and sharpness of the power means inequality and their applications. J. Math. Anal. Appl., 2005, 312(2): 637-652

[33]

Alzer H. The inequality of Ky Fan and related results. Acta Appl. Math., 1995, 38(3): 305-354

[34]

Zhang H F. Generalization and sharpening of Safta’s conjeture in the n-dimensional space. J. Geom., 2000, 68: 214-217

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/