Laplacians and spectrum for singular foliations

Iakovos Androulidakis

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 679 -690.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 679 -690. DOI: 10.1007/s11401-014-0858-4
Article

Laplacians and spectrum for singular foliations

Author information +
History +
PDF

Abstract

The author surveys Connes’ results on the longitudinal Laplace operator along a (regular) foliation and its spectrum, and discusses their generalization to any singular foliation on a compact manifold. Namely, it is proved that the Laplacian of a singular foliation is an essentially self-adjoint operator (unbounded) and has the same spectrum in every (faithful) representation, in particular, in L 2 of the manifold and L 2 of a leaf. The author also discusses briefly the relation of the Baum-Connes assembly map with the calculation of the spectrum.

Keywords

Laplacian / Singular foliation / Holonomy

Cite this article

Download citation ▾
Iakovos Androulidakis. Laplacians and spectrum for singular foliations. Chinese Annals of Mathematics, Series B, 2014, 35(5): 679-690 DOI:10.1007/s11401-014-0858-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Androulidakis I, Skandalis G. The holonomy groupoid of a singular foliation. J. Reine Angew. Math., 2009, 626: 1-37

[2]

Androulidakis I, Skandalis G. Pseudodifferential calculus on singular foliations. J. Noncomm. Geom., 2011, 5(1): 125-152

[3]

Androulidakis I, Skandalis G. The analytic index of elliptic pseudodifferential operators on a singular foliation. Journal of K-theory, 2011, 8(3): 363-385

[4]

Androulidakis, I. and Zambon, M., Smoothness of holonomy covers for singular foliations and essential isotropy, arXiv:1111.1327.

[5]

Androulidakis, I. and Zambon, M., Holonomy transformations for singular foliations, arXiv:1205.6008.

[6]

Baaj S, Julg P. Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules hilbertienes. C.R.A.S., 1983, 296(2): 875-878

[7]

Bigonnet B, Pradines J. Graphe d’un feuilletage singulier. C.R.A.S., 1985, 300(13): 439-442

[8]

Connes A. Sur la théorie noncommutative de l’intégration. Lecture Notes in Math., 1979, 725: 19-143

[9]

Crainic M, Fernandes R L. Integrability of Lie brackets. Ann. of Math., 2003, 157: 575-620

[10]

Debord C. Local integration of Lie algebroids. Banach Center Publ., 2001, 54: 21-33

[11]

Debord C. Holonomy groupoids of singular foliations. J. Diff. Geom., 2001, 58: 467-500

[12]

Fack T, Skandalis G. Sur les Représentations et idéaux de la C*-algèbre d’un feuilletage. J. Operator Theory, 1982, 8: 95-129

[13]

Renault, J. N., A groupoid approach to C*-algebras, Lecture Notes in Math., 793, 1979.

[14]

Stefan P. Accessible sets, orbits, and foliations with singularities. Proc. London Math. Soc., 1974, 29(3): 699-713

[15]

Sussmann H J. Orbits of families of vector fields and integrability of distributions. Trans. of A. M. S., 1973, 180: 171-188

[16]

Vassout S. Unbounded pseudodifferential Calculus on Lie groupoids. Journal of Functional Analysis, 2006, 236: 161-200

[17]

Woronowicz S L. Unbounded elements affiliated with C*-algebras and noncompact quantum groups. Comm. Math. Phys., 2001, 196(2): 399-432

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/