C*-algebraic intertwiners for degenerate principal series of special linear groups

Pierre Clare

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 691 -702.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 691 -702. DOI: 10.1007/s11401-014-0857-5
Article

C*-algebraic intertwiners for degenerate principal series of special linear groups

Author information +
History +
PDF

Abstract

The author constructs unitary intertwiners for degenerate C*-algebraic universal principal series of SL(n + 1) over a local field by explicitely normalizing standard intertwining integrals at the level of Hilbert modules.

Keywords

Group C*-algebras / Hilbert modules / Semisimple Lie groups / Principal series representations / Intertwining operators

Cite this article

Download citation ▾
Pierre Clare. C*-algebraic intertwiners for degenerate principal series of special linear groups. Chinese Annals of Mathematics, Series B, 2014, 35(5): 691-702 DOI:10.1007/s11401-014-0857-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clare P. C*-algebraic intertwiners for principal series: Case of SL(2). J. Noncommut. Geom., 2011

[2]

Clare P. On the degenerate principal series of complex symplectic groups. J. Funct. Anal., 2012, 262(9): 4160-4180

[3]

Clare P. Hilbert modules associated to parabolically induced representations of semisimple Lie groups. J. Operator Theory, 2013, 69(2): 483-509

[4]

Clerc J L. Intertwining operators for the generalized principal series on symmetric R-spaces, 2012

[5]

Dixmier J. Les C*-algèbres et leurs représentations, Gauthier-Villars and Cie, 1964, Paris: Editeur-Imprimeur

[6]

Godement R, Jacquet H. Zeta Functions of Simple Algebras, 1972, Belin, New York: Springer-Verlag

[7]

Helgason S. The Radon Transform, 1999 Second Edition

[8]

Knapp A W. Representation Theory of Semisimple Groups, 1986, Princeton, NT: Princeton University Press

[9]

Knapp A W. Lie Groups, Beyond an Introduction, 2002 Second Edition Boston, MA: Birkhäuser Boston, Inc.

[10]

Knapp A W, Stein E M. Intertwining operators for semisimple groups. Ann. of Math., 1971, 93: 489-578

[11]

Knapp A W, Stein E M. Intertwining operators for semisimple groups II. Invent. Math., 1980, 601: 9-84

[12]

Kobayashi, T. and Mano, G., The Schröbinger model for the minimal representation of the indefinite orthogonal group O (p, q), Mem. Amer. Math. Soc., 213(1000), 2011, 132 pages.

[13]

Kobayashi T, Ørsted B, Pevzner M. Geometric analysis on small unitary representations of GL(N, ℝ). J. Funct. Anal., 2011, 260(6): 1682-1720

[14]

Lafforgue V. K-Théorie bivariante pour les algèbres de banach et conjecture de baum-connes. Invent. Math., 2002, 149(1): 1-95

[15]

Ólafsson G, Pasquale A. The Cosλ and Sinλ transforms as intertwining operators between generalized principal series representations of SL(n + 1, K). Advances in Math., 2012, 229(1): 267-293

[16]

Rieffel Marc A. Induced representations of C*-algebras. Advances in Math., 1974, 13: 176-257

[17]

Shahidi F. Fourier transforms of intertwining operators and Plancherel measures for GL(n). Amer. J. Math., 1984, 1061: 67-111

[18]

Stein E M. Analysis in matrix spaces and some new representations of SL(N,C). Ann. of Math., 1967, 86: 461-490

[19]

Vogan D, Wallach N. Intertwining operators for real reductive groups. Advances in Math., 1990, 82(2): 203-243

[20]

Weil A. Basic Number Theory, Classics in Mathematics, 1995, Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/