K-theory and the quantization commutes with reduction problem

Nigel Higson , Yanli Song

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 703 -732.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 703 -732. DOI: 10.1007/s11401-014-0856-6
Article

K-theory and the quantization commutes with reduction problem

Author information +
History +
PDF

Abstract

The authors examine the quantization commutes with reduction phenomenon for Hamiltonian actions of compact Lie groups on closed symplectic manifolds from the point of view of topological K-theory and K-homology. They develop the machinery of K-theory wrong-way maps in the context of orbifolds and use it to relate the quantization commutes with reduction phenomenon to Bott periodicity and the K-theory formulation of the Weyl character formula.

Keywords

Symplectic reduction / Quantization / K-Theory / K-Homology / Compact Lie groups

Cite this article

Download citation ▾
Nigel Higson, Yanli Song. K-theory and the quantization commutes with reduction problem. Chinese Annals of Mathematics, Series B, 2014, 35(5): 703-732 DOI:10.1007/s11401-014-0856-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atiyah M F. Global Theory of Elliptic Operators. Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), 1970, Tokyo: Univ. of Tokyo Press 21-30

[2]

Atiyah M F. Elliptic Operators and Compact Groups, 1974, Berlin: Springer-Verlag

[3]

Atiyah M F, Hirzebruch F. Riemann-Roch theorems for differentiable manifolds. Bull. Amer. Math. Soc., 1959, 65: 276-281

[4]

Atiyah M F, Hirzebruch F. Spin-manifolds and Group Actions, in Essays on Topology and Related Topics (Mémoires Dédiés à Georges de Rham), 1970, New York: Springer-Verlag 18-28

[5]

Atiyah M F, Segal G B. The index of elliptic operators. II. Ann. of Math, 1968, 87: 531-545

[6]

Atiyah M F, Singer I M. The index of elliptic operators. I. Ann. of Math, 1968, 87: 484-530

[7]

Baum P, Oyono-Oyono H, Schick T Equivariant geometric K-homology for compact Lie group actions. Abh. Math. Semin. Univ. Hambg., 2010, 80(2): 149-173

[8]

Baum P F, Douglas R G. K-Homology and Index Theory. Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Vol. 38, 1982, Providence, RI: Amer. Math. Soc. 117-173

[9]

Baum P F, Higson N, Schick T. On the equivalence of geometric and analytic K-homology. Pure Appl. Math. Q., 2007, 3: 1-24

[10]

Block J, Higson N. Weyl Character Formula in K-Theory. Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry, Kyoto University, World Scientific, 2013 299-334

[11]

Cannas da Silva A, Guillemin V. Quantization of Symplectic Orbifolds and Group Actions, 1999, Providence, RI: Amer. Math. Soc. 1-12

[12]

Cannas da Silva A, Karshon Y, Tolman S. Quantization of presymplectic manifolds and circle actions. Trans. Amer. Math. Soc., 2000, 352(2): 525-552

[13]

Duistermaat H, Guillemin V, Meinrenken E, Wu S. Symplectic reduction and Riemann-Roch for circle actions. Math. Res. Lett., 1995, 2(3): 259-266

[14]

Guillemin V, Ginzburg V L, Karshon Y. Moment Maps, Cobordisms, and Hamiltonian Group Actions, Vol. 98, 2002, Providence, RI: Mathematical Surveys and Monographs, Amer. Math. Soc.

[15]

Guillemin V, Sternberg S. Homogeneous quantization and multiplicities of group representations. J. Funct. Anal., 1982, 47(3): 344-380

[16]

Guillemin V, Sternberg S. Geometric quantization and multiplicities of group representations. Invent. Math., 1982, 67(3): 515-538

[17]

Higson N, Roe J. Analytic K-Homology, Oxford Mathematical Monographs, 2000, Oxford: Oxford University Press

[18]

Karoubi M. K-Theory, 1978, Berlin: Springer-Verlag

[19]

Kasparov G G. Topological invariants of elliptic operators, I, K-homology. Izv. Akad. Nauk SSSR Ser. Mat., 1975, 39(4): 796-838

[20]

Kosniowski C. Applications of the holomorphic Lefschetz formula. Bull. London Math. Soc., 1970, 2: 43-48

[21]

Meinrenken E. On Riemann-Roch formulas for multiplicities. J. Amer. Math. Soc., 1996, 9(2): 373-389

[22]

Metzler D S. A K-theoretic note on geometric quantization. Manuscripta Math., 1999, 100(3): 277-289

[23]

Segal G B. Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math., 1968, 34: 129-151

[24]

Sjamaar R. Symplectic reduction and Riemann-Roch formulas for multiplicities. Bull. Amer. Math. Soc. (N. S.), 1996, 33(3): 327-338

[25]

Vergne M. Equivariant index formulas for orbifolds. Duke Math. J., 1996, 82(3): 637-652

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/