Coarse embedding into uniformly convex Banach spaces

Qinggang Ren

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 733 -742.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 733 -742. DOI: 10.1007/s11401-014-0855-7
Article

Coarse embedding into uniformly convex Banach spaces

Author information +
History +
PDF

Abstract

In this paper, the author studies the coarse embedding into uniformly convex Banach spaces. The author proves that the property of coarse embedding into Banach spaces can be preserved under taking the union of the metric spaces under certain conditions. As an application, for a group G strongly relatively hyperbolic to a subgroup H, the author proves that B(n) = {gG | |g| S∪ℋn} admits a coarse embedding into a uniformly convex Banach space if H does.

Keywords

Coarse embedding / Uniformly convex Banach spaces / Relative hyperbolic groups

Cite this article

Download citation ▾
Qinggang Ren. Coarse embedding into uniformly convex Banach spaces. Chinese Annals of Mathematics, Series B, 2014, 35(5): 733-742 DOI:10.1007/s11401-014-0855-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benyamini Y, Lindenstrauss J. Geometric Nonlinear Functional Analysis, Vol. 48, 2000, Providence, RI: American Mathematical Society

[2]

Brown N, Guentner E. Uniform embeddings of bounded geometry spaces into reflexive Banach space. Proc. Amer. Math. Soc., 2005, 133: 2045-2050

[3]

Chen X, Wang Q, Yu G. The maximal coarse Baum-Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space, 2012

[4]

Dadarlat M, Guentner E. Constructions preserving Hilbert space uniform embeddability of discrete groups. Trans. Amer. Math. Soc., 2003, 355: 3253-3275

[5]

Dadarlat M, Guentner E. Uniform embeddability of relatively hyperbolic groups. J. Reine Angew. Math., 2007, 612: 1-15

[6]

Farb B. Relatively hyperbolic groups. Geom. Funct. Anal., 1998, 8(5): 810-840

[7]

Ferry S C, Ranicki A, Rosenberg J. A History Survey of the Novikov Conjecture, Novikov Conjectures, Index Theorems and Rigidity, London Mathematical Society Lecture Notes, Vol. 1, 1995, Cambridge: Cambridge University Press

[8]

Fukaya T, Oguni S. The coarse Baum-Connes conjecture for relatively hyperbolic groups. J. Topol. Anal., 2012, 4(1): 99-113

[9]

Gromov M. Asymptotic Invariants of Infinite Groups, Geometric Group Theory, Vol. 2, 1993, Cambridge: Cambridge University Press

[10]

Johnson W B, Lindenstrauss J. Handbook of geometry of Banach spaces, 2001, Amsterdam, New York: Elsevier

[11]

Johnson W B, Randrianarivony N L. p (p > 2) does not coarsely embed into a Hilbert space. Proc. Amer. Math. Soc., 2006, 134(4): 1045-1050

[12]

Kasparov G, Yu G. The coarse geometric Novikov conjecture and uniform convexity. Adv. Math., 2006, 206(1): 1-56

[13]

Lafforgue V. Un renforcement de la properiété. Duke Math. J., 2008, 143(3): 559-602

[14]

Osin D. Asymptotic dimension of relatively hyperbolic groups. Int. Math. Res. Not., 2005, 35: 2143-2161

[15]

Roe J. Lectures on Coarse Geometry, 2003, Providence, RI: Amer. Math. Soc.

[16]

Yu G. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 2000, 139(1): 201-240

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/