Conjugacy classes and characters for extensions of finite groups

Xiang Tang , Hsian-Hua Tseng

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 743 -750.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 743 -750. DOI: 10.1007/s11401-014-0854-8
Article

Conjugacy classes and characters for extensions of finite groups

Author information +
History +
PDF

Abstract

Let H be an extension of a finite group Q by a finite group G. Inspired by the results of duality theorems for étale gerbes on orbifolds, the authors describe the number of conjugacy classes of H that map to the same conjugacy class of Q. Furthermore, a generalization of the orthogonality relation between characters of G is proved.

Keywords

Group extensions / Conjugacy classes / Orthogonality of characters

Cite this article

Download citation ▾
Xiang Tang, Hsian-Hua Tseng. Conjugacy classes and characters for extensions of finite groups. Chinese Annals of Mathematics, Series B, 2014, 35(5): 743-750 DOI:10.1007/s11401-014-0854-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behrend K, Xu P. Differentiable stacks and gerbes. J. Symplectic Geom., 2011, 9(3): 285-341

[2]

Berkovich Y G, Zhmud’ E M. Characters of Finite Groups, Part 1, 1998, Providence, RI: Amer. Math. Soc.

[3]

Fulton W, Harris J. Representation Theory, Readings in Mathematics, 1991, New York: Springer-Verlag

[4]

Hellerman S, Henriques A, Pantev T Cluster decomposition, T-duality, and gerby CFTs. Adv. Theor. Math. Phys., 2007, 11(5): 751-818

[5]

Laurent-Gengoux C, Stiénon M, Xu P. Non-abelian differentiable gerbes. Adv. Math., 2009, 220(5): 1357-1427

[6]

Ruan Y. Discrete torsion and twisted orbifold cohomology. J. Symplectic Geom., 2003, 2(1): 1-24

[7]

Schreier O. Uber die Erweiterung von Gruppen I. Monatsh. Math. Phys., 1926, 34(1): 165-180

[8]

Tang X, Tseng H -H. Duality theorems for étale gerbes on orbifolds. Adv. Math., 2014, 250: 496-569

[9]

Tu J, Xu P, Laurent-Gengoux C. Twisted K-theory of differentiable stacks. Ann. Sci.École Norm. Sup, 2004, 37(6): 841-910

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/