Geometric property (T)

Rufus Willett , Guoliang Yu

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 761 -800.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 761 -800. DOI: 10.1007/s11401-014-0852-x
Article

Geometric property (T)

Author information +
History +
PDF

Abstract

This paper discusses “geometric property (T)”. This is a property of metric spaces introduced in earlier works of the authors for its applications to K-theory. Geometric property (T) is a strong form of “expansion property”, in particular, for a sequence (X n) of bounded degree finite graphs, it is strictly stronger than (X n) being an expander in the sense that the Cheeger constants h(X n) are bounded below.

In this paper, the authors show that geometric property (T) is a coarse invariant, i.e., it depends only on the large-scale geometry of a metric space X. The authors also discuss how geometric property (T) interacts with amenability, property (T) for groups, and coarse geometric notions of a-T-menability. In particular, it is shown that property (T) for a residually finite group is characterised by geometric property (T) for its finite quotients.

Keywords

Coarse geometry / Expander / Roe algebra / Property (T)

Cite this article

Download citation ▾
Rufus Willett, Guoliang Yu. Geometric property (T). Chinese Annals of Mathematics, Series B, 2014, 35(5): 761-800 DOI:10.1007/s11401-014-0852-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bekka B, de la Harpe P, Valette A. Kazhdan’s Property (T), 2008, Cambridge: Cambridge University Press

[2]

Block J, Weinberger S. Aperiodic tilings, positive scalar curvature and amenability of spaces. J. Amer. Math. Soc., 1992, 5(4): 907-918

[3]

Brodzki J, Niblo G, Wright N. Property A, partial translation structures and uniform embeddings in groups. J. London Math. Soc., 2007, 76(2): 479-497

[4]

Brown N, Ozawa N. C*-Algebras and Finite-Dimensional Approximations, 2008, Providence: American Mathematical Society

[5]

Chen X, Wang Q, Yu G. The maximal coarse Baum-Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space. Adv. Math., 2013, 249(130): 88-130

[6]

Finn-Sell, M., Fibred coarse embeddings, a-T-menability and the coarse analogue of the Novikov conjecture, arXiv:1304.3348v2.

[7]

Finn-Sell, M. and Wright, N., Spaces of graphs, boundary groupoids and the coarse Baum-Connes conjecture, arXiv:1208.4237v2.

[8]

Gong G, Wang Q, Yu G. Geometrization of the strong Novikov conjecture for residually finite groups. J. Reine Angew. Math., 2008, 621: 159-189

[9]

Gromov, M., Asymptotic Invariants of Infinite Groups, Niblo G., Roller M. (eds.), Geometric Group Theory, Vol. 2, Cambridge University Press, Cambridge, 1993.

[10]

Levine, L., Hall’s marriage theorem and Hamiltonian cycles and graphs, http://www.math.cornell.edu/~levine/hallsthm.pdf.

[11]

Lubotzky A. Discrete Groups, 1994, Basel: Expanding Graphs and Invariant Measures, Birkhäuser

[12]

Oyono-Oyono H, Yu G. K-theory for the maximal Roe algebra of certain expanders. J. Funct. Anal., 2009, 257(10): 3239-3292

[13]

Roe J. Lectures on Coarse Geometry, 2003, Providence: American Mathematical Society

[14]

Skandalis G, Tu J L, Yu G. The coarse Baum-Connes conjecture and groupoids. Topology, 2002, 41: 807-834

[15]

Tu J L. La conjecture de Baum-Connes pour les feuilletages moyennables. K-theory, 1999, 17: 215-264

[16]

Valette A. Minimal projections, integrable representations and property (T). Arch. Math. (Basel), 1984, 43(5): 397-406

[17]

Willett R, Yu G. Higher index theory for certain expanders and Gromov monster groups I. Adv. Math., 2012, 229(3): 1380-1416

[18]

Willett R, Yu G. Higher index theory for certain expanders and Gromov monster groups II. Adv. Math., 2012, 229(3): 1762-1803

[19]

Yu G. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 2000, 139(1): 201-240

[20]

Żuk A. Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal., 2003, 13(3): 643-670

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/