Rankin-Cohen deformations and representation theory

Yijun Yao

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 817 -840.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (5) : 817 -840. DOI: 10.1007/s11401-014-0850-z
Article

Rankin-Cohen deformations and representation theory

Author information +
History +
PDF

Abstract

The author uses the unitary representation theory of SL 2(ℝ) to understand the Rankin-Cohen brackets for modular forms. Then this interpretation is used to study the corresponding deformation problems that Paula Cohen, Yuri Manin and Don Zagier initiated. Two uniqueness results are established.

Keywords

Modular forms / Rankin-Cohen brackets / Representation theory / Rankin-Cohen deformation

Cite this article

Download citation ▾
Yijun Yao. Rankin-Cohen deformations and representation theory. Chinese Annals of Mathematics, Series B, 2014, 35(5): 817-840 DOI:10.1007/s11401-014-0850-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bayen F, Flato M, Fronsdal C Deformation theory and quantization I, Deformations of symplectic structures. Ann. Physics, 1978, 111(1): 61-110

[2]

Bieliavsky P, Tang X, Yao Y J. Rankin-Cohen brackets and quantization of foliation, Part I: formal quantization. Advances in Mathematics, 2007, 212(1): 293-314

[3]

Bröcker T, tom Dieck T. Representations of compact Lie groups, Translated from the German manuscript, Corrected reprint of the 1985 translation, 1995, New York: Springer-Verlag

[4]

Cohen H. Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann., 1975, 217: 271-285

[5]

Cohen P B, Manin Y, Zagier D. Automorphic pseudodifferential operators, Algebraic aspects of integrable systems, 1997, Boston, MA: Birkhäuser Boston 17-47

[6]

Connes A. Cyclic cohomology and the transverse fundamental class of a foliation, Geometric methods in operator algebras. Pitman Res. Notes in Math., 1986, 123: 52-144

[7]

Connes A. Noncommutative Geometry, 1994, San Diego, CA: Academic Press, Inc.

[8]

Connes A, Moscovici H. Hopf algebras, cyclic cohomology and the transverse index theorem. Commun. Math. Phys., 1998, 198: 199-246

[9]

Connes A, Moscovici H. Cyclic cohomology and Hopf algebra symmetry. Letters Math. Phys., 2000, 52: 1-28

[10]

Connes A, Moscovici H. Differentiable cyclic cohomology and Hopf algebraic structures in transverse geometry, 2001 217-255

[11]

Connes A, Moscovici H. Modular Hecke algebras and their Hopf symmetry. Mosc. Math. J., 2004, 4(1): 67-109

[12]

Connes A, Moscovici H. Rankin-Cohen brackets and the Hopf algebra of transverse geometry. Mosc. Math. J., 2004, 4(1): 111-130

[13]

Deligne P. Formes modulaires et représentations de GL(2) (French), Modular functions of one variable, II, 1972, Antwerp: Proc. Internat. Summer School, Univ. Antwerp 55-105

[14]

Fedosov B. Deformation quantization and index theory, 1996, Berlin: Akademie-Verlag

[15]

El Gradechi A M. The Lie theory of the Rankin-Cohen brackets and allied bi-differential operators. Adv. Math., 2006, 207(2): 484-531

[16]

Waldschmidt M, Moussa P, Luck J M, Itzykson C. From number theory to physics, Papers from the Meeting on Number Theory and Physics Held in Les Houches, March 7–16, 1989, 1992, Berlin: Springer-Verlag

[17]

Kirillov, A., Eléments de la théorie des représentations (French), Traduit du russe par A. Sossinsky, A. B. Sosinskiĭ (ed.), Editions Mir, Moscow, 1974.

[18]

Knapp A W. Representation theory of semisimple groups, an overview based on examples, Reprint of the 1986 original, Princeton Landmarks in Mathematics, 2001, Princeton, NJ: Princeton University Press

[19]

Lang S. SL2(R), 1975, Reading, Mass., London, Amsterdam: Addison-Wesley Publishing Co.

[20]

Labesse, J. P., Personal communication, 2005.

[21]

Moyal J E. Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc., 1949, 45: 99-124

[22]

Rankin R A. The construction of automorphic forms from the derivatives of a given form. J. Indian Math. Soc. (N.S.), 1956, 20: 103-116

[23]

Repka J. Tensor products of unitary representations of SL2(R). Amer. J. Math., 1978, 100(4): 747-774

[24]

Rochberg R, Tang X, Yao Y J. A survey on Rankin-Cohen deformations, Perspectives on Noncommutative Geometry. Fields Inst. Commun., 2011, 61: 133-151

[25]

Serre J P. A course in arithmetic, 1973, New York, Heidelberg: Springer-Verlag

[26]

Schmid W. Representations of semi-simple Lie groups, Representation theory of Lie groups, 1979, Cambridge: Cambridge Univ. Press.

[27]

Sugiura M. Unitary representations and harmonic analysis, 1975, Tokyo: Kodansha Ltd.

[28]

Valette A. K-Théorie pour Certaines C*-algèbres Associées aux Groupes de Lie, 1983, Bruxelles: Université Libre de Bruxelles

[29]

Vogan D A Jr. Representations of real reductive Lie groups, 1981, Boston, Mass.: Birkhäuser

[30]

Weissman M H. Multiplying Modular Forms. Modular forms on Schiermonnikoog, 2008, Cambridge: Cambridge Univ. Press 311-341

[31]

Zagier D. Modular forms and differential operators, K. G. Ramanathan memorial issue. Proc. Indian Acad. Sci. Math. Sci., 1994, 104(1): 57-75

[32]

Zagier, D., Formes modulaires et opérateurs différentiels, Cours 2001–2002 au Collège de France.

[33]

Zagier, D., Some combinatorial identities occuring in the theory of modular forms, in preparation.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/