Poles of L-functions on quaternion groups

Çetin Ürtiş

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (4) : 519 -526.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (4) : 519 -526. DOI: 10.1007/s11401-014-0849-5
Article

Poles of L-functions on quaternion groups

Author information +
History +
PDF

Abstract

The author shows that the (partial) standard Langlands L-functions on quarternion groups have at most simple poles at certain positive integers.

Keywords

Siegel Eisenstein series / L-Functions / Quaternion groups / Regularized Siegel-Weil formula

Cite this article

Download citation ▾
Çetin Ürtiş. Poles of L-functions on quaternion groups. Chinese Annals of Mathematics, Series B, 2014, 35(4): 519-526 DOI:10.1007/s11401-014-0849-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arthur J. Eisenstein series and the trace formula, Automorphic Forms, Representations and L-Functions, 1979, Providence, R. I.: Amer. Math. Soc. 253-274

[2]

Casselman W. The unramified principal series of p-adic groups, I, the spherical function. Compositio Math., 1980, 40(3): 387-406

[3]

Garrett P B. Pullbacks of Eisenstein Series; Applications, 1984, Boston, MA: Progr. Math., Birkhäuser Boston 114-137

[4]

Gelbart S, Piatetski-Shapiro I, Rallis S. Explicit Constructions of Automorphic L-Functions, 1987, Berlin: Springer-Verlag

[5]

Howe R. θ-Series and Invariant Theory. Automorphic Forms, 1979, Providence, R. I.: Amer. Math. Soc. 275-285

[6]

Kudla S S, Rallis S. Poles of Eisenstein Series and L-Functions, Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II (Ramat Aviv, 1989), 3, 1990, Weizmann, Jerusalem: Israel Math. Conf. Proc. 81-110

[7]

Kudla S S, Rallis S. A regularized Siegel-Weil formula: the first term identity. Ann. of Math., 1994, 140(1): 1-80

[8]

Langlands R P. On the Functional Equations Satisfied by Eisenstein Series, 1976, Berlin: Springer-Verlag

[9]

Ürtiş Special values of L-functions by a Siegel-Weil-Kudla-Rallis formula. J. Number Theory, 2007, 125(1): 149-181

[10]

Ürtiş Poles of Eisenstein series on quaternion groups. J. Number Theory, 2010, 130(9): 2065-2077

[11]

Weil A. Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math., 1965, 113: 1-87

[12]

Yamana S. L-Functions and theta correspondence for classical groups. Inventiones Mathematicae, 2013

[13]

Yamana S. On the Siegel-Weil formula for quaternionic unitary groups. Amer. J. Math., 2013, 135(5): 1383-1432

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/