Stability of inverse problems for ultrahyperbolic equations

Fikret Gölgeleyen , Masahiro Yamamoto

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (4) : 527 -556.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (4) : 527 -556. DOI: 10.1007/s11401-014-0848-6
Article

Stability of inverse problems for ultrahyperbolic equations

Author information +
History +
PDF

Abstract

In this paper, the authors consider inverse problems of determining a coefficient or a source term in an ultrahyperbolic equation by some lateral boundary data. The authors prove Hölder estimates which are global and local and the key tool is Carleman estimate.

Keywords

Ultrahyperbolic equation / Inverse problem / Stability / Carleman estimate

Cite this article

Download citation ▾
Fikret Gölgeleyen, Masahiro Yamamoto. Stability of inverse problems for ultrahyperbolic equations. Chinese Annals of Mathematics, Series B, 2014, 35(4): 527-556 DOI:10.1007/s11401-014-0848-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amirov, A. K., Doctoral Dissertation in Mathematics and Physics, Sobolev Institute of Mathematics, Novosibirsk, 1988.

[2]

Amirov A K. Integral Geometry and Inverse Problems for Kinetic Equations, 2001, Utrecht: VSP

[3]

Amirov A K, Yamamoto M. A timelike Cauchy problem and an inverse problem for general hyperbolic equations. Appl. Math. Lett., 2008, 21: 885-891

[4]

Bars I. Survey of two-time physics. Class. Quantum Grav., 2001, 18: 3113-3130

[5]

Baudouin L, Puel J -P. Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Problems, 2002, 18: 1537-1554

[6]

Bellassoued M. Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients. Applicable Analysis, 2004, 83: 983-1014

[7]

Bellassoued M, Yamamoto M. Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation. J. Math. Pures Appl., 2006, 85: 193-224

[8]

Bellassoued M, Yamamoto M. Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases. Applicable Analysis, 2012, 91: 35-67

[9]

Bukhgeim A L, Klibanov M V. Global uniqueness of a class of multidimensional inverse problems. Soviet Math. Dokl., 1981, 24: 244-247

[10]

Burskii V P, Kirichenko E V. Unique solvability of the Dirichlet problem for an ultrahyperbolic equation in a ball. Differential Equations, 2008, 44: 486-498

[11]

Craig W, Weinstein S. On determinism and well-posedness in multiple time dimensions. Proc. Royal Society A, 2009, 465: 3023-3046

[12]

Diaz J B, Young E C. Uniqueness of solutions of certain boundary value problems for ultrahyperbolic equations. Proc. Amer. Math. Soc., 1971, 29: 569-574

[13]

Hörmander L. Linear Partial Differential Operators, 1963, Berlin: Springer-Verlag

[14]

Hörmander L. Asgeirsson’s mean value theorem and related identities. J. Funct. Anal., 2001, 184: 377-401

[15]

Imanuvilov O Y, Yamamoto M. Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Problems, 1998, 14: 1229-1249

[16]

Imanuvilov O Y, Yamamoto M. Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Problems, 2001, 17: 717-728

[17]

Isakov V. Inverse Problems for Partial Differential Equations, 2006, Berlin: Springer-Verlag

[18]

Kenig C E, Ponce G, Rolvung C, Vega L. Variable coefficient Schrödinger flows for ultrahyperbolic operators. Advances in Mathematics, 2005, 196: 373-486

[19]

Kenig C E, Ponce G, Vega L. Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Inven. Math., 1998, 134: 489-545

[20]

Khaĭdarov A. On stability estimates in multidimensional inverse problems for differential equation. Soviet Math. Dokl., 1989, 38: 614-617

[21]

Klibanov M V. Inverse problems in the “large” and Carleman bounds. Differential Equations, 1984, 20: 755-760

[22]

Klibanov M V. Inverse problems and Carleman estimates. Inverse Problems, 1992, 8: 575-596

[23]

Klibanov M V, Timonov A. Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, 2004, Utrecht: VSP

[24]

Kostomarov D P. A Cauchy problem for an ultrahyperbolic equation. Differential Equations, 2002, 38: 1155-1161

[25]

Kostomarov D P. Problems for an ultrahyperbolic equation in the half-space with the boundedness condition for the solution. Differential Equations, 2006, 42: 261-268

[26]

Lavrent’ev M M, Romanov V G, Shishat·skiĭ S P. Ill-posed Problems of Mathematical Physics and Analysis, 1986, Providence, RI: American Math. Soc.

[27]

Owens O G. Uniqueness of solutions of ultrahyperbolic partial differential equations. Amer. J. Math., 1947, 69: 184-188

[28]

Romanov V G. Estimate for the solution to the Cauchy problem for an ultrahyperbolic inequality. Doklady Math., 2006, 74: 751-754

[29]

Sparling G A J. Germ of a synthesis: space-time is spinorial, extra dimensions are time-like. Proc. Royal Soc. A, 2007, 463: 1665-1679

[30]

Sulem C, Sulem P -L. The Nonlinear Schrödinger Equation, 1999, Berlin: Spriner-Verlag

[31]

Tegmark M. On the dimensionality of space-time. Class. Quant. Grav., 1997, 14: L69-L75

[32]

Yamamoto M. Carleman estimates for parabolic equations and applications. Inverse Problems, 2009, 25: 123013

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/