Betti numbers of locally standard 2-torus manifolds

Junda Chen , Zhi Lü

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (4) : 599 -606.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (4) : 599 -606. DOI: 10.1007/s11401-014-0845-9
Article

Betti numbers of locally standard 2-torus manifolds

Author information +
History +
PDF

Abstract

Let M n be a smooth closed n-manifold with a locally standard (ℤ2) n-action. This paper deals with the relationship among the mod 2 Betti numbers of M n, the mod 2 Betti numbers and the h-vector of the orbit space of the action.

Keywords

Locally standard 2-torus action / Manifold with corners / Betti number

Cite this article

Download citation ▾
Junda Chen, Zhi Lü. Betti numbers of locally standard 2-torus manifolds. Chinese Annals of Mathematics, Series B, 2014, 35(4): 599-606 DOI:10.1007/s11401-014-0845-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown M. Locally flat embeddings of topological manifolds. Ann. Math., 1962, 75: 331-340

[2]

Buchstaber V M, Panov T E. Torus Actions and Their Applications in Topology and Combinatorics, 2002, Providence, RI: Amer. Math. Soc.

[3]

Davis M W. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math., 1983, 117: 293-324

[4]

Davis M, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J., 1991, 61: 417-451

[5]

Grünbaum B. Convex Polytopes, 2003, New York: Springer-Verlag

[6]

Z. Lectures on Elements of Transformation Groups and Orbifolds, Transformation Groups and Moduli Spaces of Curves, 239–276, 2011, Somerville, MA: Int. Press

[7]

Z, Masuda M. Equivariant classification of 2-torus manifolds. Colloq. Math., 2009, 115: 171-188

[8]

Ziegler G M. Lectures on Polytopes, Graduate Texts in Math., 1994, Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/