The periodic solutions of a nonhomogeneous string with Dirichlet-Neumann condition

Changqing Tong , Jing Zheng

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (4) : 619 -632.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (4) : 619 -632. DOI: 10.1007/s11401-014-0843-y
Article

The periodic solutions of a nonhomogeneous string with Dirichlet-Neumann condition

Author information +
History +
PDF

Abstract

This paper deals with the existence of periodic solutions of a nonhomogeneous string with Dirichlet-Neumann condition. The authors consider the case that the period is irrational multiple of space length and prove that for some irrational number, zero is not the accumulation point of the spectrum of the associated linear operator. This result can be used to prove the existence of the periodic solution avoid using Nash-Moser iteration.

Keywords

Nonhomogeneous string / Periodic solutions / Weak solution / Continued fraction / Lagrange constant

Cite this article

Download citation ▾
Changqing Tong, Jing Zheng. The periodic solutions of a nonhomogeneous string with Dirichlet-Neumann condition. Chinese Annals of Mathematics, Series B, 2014, 35(4): 619-632 DOI:10.1007/s11401-014-0843-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baldi P, Berti M. Forced vibrations of a nonhomogeneous string. SIAM J M Analysis, 2008, 40: 382-412

[2]

Barbu V, Pavel N H. Periodic solutions to nonlinear one-dimensional wave equation with x-dependent coefficients. Trans. Amer. Math. Soc., 1997, 349: 2035-2048

[3]

Ben-Naoum A K, Mawhin J. The periodic Dirichlet problem for some semilinear wave equations. J. Differential Equations, 1992, 96: 340-354

[4]

Berkovits J, Mawhin J. Diophantine approximation, Bessel functions and radially symmetric periodic solutions of semilinear wave equations in a ball. Trans. Amer. Math. Soc., 2001, 353: 5041-5055

[5]

Berti M, Bolle P. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm. Math. Phys., 2003, 243(2): 315-328

[6]

Berti M, Bolle P. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Analysis TMA., 2004, 56(7): 1011-1046

[7]

Berti M, Bolle P. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Mathematical J., 2006, 134(2): 359-419

[8]

Berti M, Bolle P. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis, 2010, 195: 609-642

[9]

Berti M, Bolle P, Procesi M. An abstract Nash-Moser theorem with parameters and applications to PDEs. Ann. Inst. Henri Poincaré Anal., 2010, 27: 377-399

[10]

Brézis H. Periodic solutions of nonlinear vibrating strings and duality principles. Bull. AMS, 1983, 8: 409-426

[11]

Ji S, Li Y. Periodic solutions to one-dimensional wave equation with x-dependent coefficients. J. Differential Equations, 2006, 229: 466-493

[12]

Ji S, Li Y. Time periodic solutions to one-dimensional wave equation with periodic or anti-periodic boundary conditions. Proc. Roy. Soc. Edinburgh Sect. Ser. A, 2007, 137: 349-371

[13]

Rudakov I A. Periodic solutions of a nonlinear wave equation with nonconstant coefficients. J. Differential Equations, 2006, 229: 466-493

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/