An inverse problem of identifying the radiative coefficient in a degenerate parabolic equation

Zuicha Deng , Liu Yang

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (3) : 355 -382.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (3) : 355 -382. DOI: 10.1007/s11401-014-0836-x
Article

An inverse problem of identifying the radiative coefficient in a degenerate parabolic equation

Author information +
History +
PDF

Abstract

The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.

Keywords

Inverse problem / Degenerate parabolic equation / Optimal control / Existence, Uniqueness / Stability / Convergence

Cite this article

Download citation ▾
Zuicha Deng, Liu Yang. An inverse problem of identifying the radiative coefficient in a degenerate parabolic equation. Chinese Annals of Mathematics, Series B, 2014, 35(3): 355-382 DOI:10.1007/s11401-014-0836-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R A. Sobolev Spaces, 1975, New York: Academic Press

[2]

Cannarsa P, Tort J, Yamamoto M. Determination of source terms in a degenerate parabolic equation. Inverse Problems, 2010, 26: 105003

[3]

Cannarsa P, Martinez P, Vancostenoble J. Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim., 2008, 47: 1-19

[4]

Cannarsa P, Martinez P, Vancostenoble J. Null controllability of degenerate heat equations. Adv. Differ. Equ., 2005, 10: 153-190

[5]

Cannarsa P, Martinez P, Vancostenoble J. Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal., 2004, 3: 607-635

[6]

Cannon J R, Lin Y, Xu S. Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations. Inverse Problems, 1994, 10: 227-243

[7]

Cannon J R, Lin Y. An inverse problem of finding a parameter in a semilinear heat equation. J. Math. Anal. Appl., 1990, 145: 470-484

[8]

Chen Q, Liu J J. Solving an inverse parabolic problem by optimization from final measurement data. J. Comput. Appl. Math., 2006, 193: 183-203

[9]

Cheng J, Yamamoto M. One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse problems, 2000, 16(4): 31-36

[10]

Choulli M, Yamamoto M. Generic well-posedness of an inverse parabolic problem-the Hölder space approach. Inverse Problems, 1996, 12(3): 195-205

[11]

Choulli M, Yamamoto M. An inverse parabolic problem with non-zero initial condition. Inverse Problems, 1997, 13: 19-27

[12]

Dehghan M. Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement. Numer. Meth. Part. Diff. Equ., 2005, 21: 611-622

[13]

Dehghan M. Determination of a control function in three-dimensional parabolic equations. Math. Comput. Simul., 2003, 61: 89-100

[14]

Demir A, Hasanov A. Identification of the unkonwn diffusion coefficient in a linear parabolic equation by the semigroup approach. J. Math. Anal. Appl., 2008, 340: 5-15

[15]

Deng Z C, Yu J N, Yang L. An inverse problem of determining the implied volatility in option pricing. J. Math. Anal. Appl., 2008, 340(1): 16-31

[16]

Deng Z C, Yu J N, Yang L. Optimization method for an evolutional type inverse heat conduction problem. J. Phys. A: Math. Theor., 2008, 41: 035201

[17]

Deng Z C, Yu J N, Yang L. Identifying the coefficient of first-order in parabolic equation from final measurement data. Math. Comput. Simul., 2008, 77: 421-435

[18]

Deng Z C, Yang L. An inverse problem of identifying the radiative coefficient in a degenerate parabolic equation, 2013

[19]

Egger H, Engl H W. Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates. Inverse Problems, 2005, 21: 1027-1045

[20]

Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems, 1996, Dordrecht: Kluwer Academic Publishers

[21]

Engl H W, Zou J. A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction. Inverse Problems, 2000, 16: 1907-1923

[22]

Imanuvilov O Y, Yamamoto M. Lipschitz stability in inverse parabolic problems by the Carleman estimates. Inverse Problems, 1998, 14: 1229-1245

[23]

Isakov V. Inverse Problems for Partial Differential Equations, 1998, New York: Springer-Verlag

[24]

Isakov V, Kindermann S. Identification of the diffusion coefficient in a one-dimensional parabolic equation. Inverse Problems, 2000, 16: 665-680

[25]

Jiang L S, Tao Y S. Identifying the volatility of underlying assets from option prices. Inverse Problems, 2001, 17: 137-155

[26]

Jiang L S, Chen Q H, Wang L J, Zhang J E. A new well-posed algorithm to recover implied local volatility. Quantitative Finance, 2003, 3: 451-457

[27]

Jiang L S, Bian B J. Identifying the principal coefficient of parabolic equations with non-divergent form. Journal of Physics: Conference Series, 2005, 12: 58-65

[28]

Kaltenbacher B, Klibanov M V. An inverse problem for a nonlinear parabolic equation with applications in population dynamics and magnetics. SIAM J. Math. Anal., 2008, 39(6): 1863-1889

[29]

Keung Y L, Zou J. Numerical identifications of parameters in parabolic systems. Inverse Problems, 1998, 14: 83-100

[30]

Kirsch A. An Introduction to the Mathematical Theory of Inverse Problem, 1999, New York: Springer-Verlag

[31]

Ladyzenskaya O, Solonnikov V, Ural’Ceva N. Linear and Quasilinear Equations of Parabolic Type, 1968, Providence, RI: A. M. S.

[32]

Liu J J. Regularization Method and Application for the Ill-posed Problem, 2005, Beijing: Science Press

[33]

Oleinik O A, Radkevič E V. Second Order Differential Equations with Non-negative Characteristic Form, 1973, New York: A. M. S., Rhode Island and Plenum Press

[34]

Rundell W. The determination of a parabolic equation from initial and final data. Proc. Am. Math. Soc., 1987, 99: 637-642

[35]

Samarskii A A, Vabishchevich P N. Numerical Methods for Solving Inverse Problems of Mathematical Physics, 2007, Berlin: Walter de Gruyter GmbH & Co. KG

[36]

Tikhonov A, Arsenin V. Solutions of Ill-posed Problems, 1979, Beijing: Geology Press

[37]

Tort J, Vancostenoble J. Determination of the insolation function in the nonlinear Sellers climate model. Ann. I. H. Poincaré-AN, 2012, 29: 683-713

[38]

Wu Z Q, Yin J X, Wang C P. Elliptic and Parabolic Equations, 2003, Beijing: Science Press

[39]

Yang L, Yu J N, Deng Z C. An inverse problem of identifying the coefficient of parabolic equation. Appl. Math. Model., 2008, 32(10): 1984-1995

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/