Tensor tomography: Progress and challenges

Gabriel P. Paternain , Mikko Salo , Gunther Uhlmann

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (3) : 399 -428.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (3) : 399 -428. DOI: 10.1007/s11401-014-0834-z
Article

Tensor tomography: Progress and challenges

Author information +
History +
PDF

Abstract

The authors survey recent progress in the problem of recovering a tensor field from its integrals along geodesics. Several open problems are also proposed.

Keywords

Inverse problem / Integral geometry / Tensor tomography

Cite this article

Download citation ▾
Gabriel P. Paternain, Mikko Salo, Gunther Uhlmann. Tensor tomography: Progress and challenges. Chinese Annals of Mathematics, Series B, 2014, 35(3): 399-428 DOI:10.1007/s11401-014-0834-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ainsworth G. The attenuated magnetic ray transform on surfaces. Inverse Probl. Imaging, 2013, 7: 27-46

[2]

Alexandrova I. Structure of the semi-classical amplitude for general scattering relations. Comm. PDE, 2005, 30: 1505-1535

[3]

Anikonov Yu, Romanov V. On uniqueness of determination of a form of first degree by its integrals along geodesics. J. Inverse Ill-Posed Probl., 1997, 5: 467-480

[4]

Assylbekov Y, Dairbekov N. The X-ray transform on a general family of curves on Finsler surfaces, preprint, 2012

[5]

Bal G. Ray transforms in hyperbolic geometry. J. Math. Pures Appl., 2005, 84: 1362-1392

[6]

Boman J, Strömberg J-O. Novikov’s inversion formula for the attenuated Radon transform — a new approach. J. Geom. Anal., 2004, 14: 185-198

[7]

Burago D, Ivanov S. Riemannian tori without conjugate points are flat. Geom. Funct. Anal., 1994, 4: 259-269

[8]

Croke C, Sharafutdinov V A. Spectral rigidity of a compact negatively curved manifold. Topology, 1998, 37: 1265-1273

[9]

Dairbekov N S. Integral geometry problem for nontrapping manifolds. Inverse Problems, 2006, 22: 431-445

[10]

Dairbekov N S, Paternain G P, Stefanov P The boundary rigidity problem in the presence of a magnetic field. Adv. Math., 2007, 216: 535-609

[11]

Dairbekov N S, Sharafutdinov V A. Some problems of integral geometry on Anosov manifolds. Ergodic Theory and Dynamical Systems, 2003, 23: 59-74

[12]

Dairbekov N S, Uhlmann G. Reconstructing the metric and magnetic field from the scattering relation. Inverse Probl. Imaging, 2010, 4: 397-409

[13]

Dos Santos Ferreira D, Kenig C E, Salo M Limiting Carleman weights and anisotropic inverse problems. Invent. Math., 2009, 178: 119-171

[14]

Eskin G. On non-abelian Radon transform. Russ. J. Math. Phys., 2004, 11: 391-408

[15]

Finch D. Uhlmann G. The attenuated X-ray transform: recent developments, Inside Out: Inverse Problems and Applications. MSRI Publications, 2003, Cambridge: Cambridge University Press 47-66

[16]

Finch D, Uhlmann G. The X-ray transform for a non-abelian connection in two dimensions. Inverse Problems, 2001, 17: 695-701

[17]

Griffiths P, Harris J. Principles of Algebraic Geometry, Reprint of the 1978 original Wiley Classics Library, 1994, New York: John Wiley & Sons

[18]

Guillemin V. Sojourn times and asymptotic properties of the scattering matrix, Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976). Publ. Res. Inst. Math. Sci., 1976, 12(supplement): 69-88

[19]

Guillemin V, Kazhdan D. Some inverse spectral results for negatively curved 2-manifolds. Topology, 1980, 19: 301-312

[20]

Helgason S. The Radon Transform, 1999 2nd edition Boston: Birkhäuser

[21]

Hörmander L. The Analysis of Linear Partial Differential Operators, IV, Fourier Integral Operators, 2009, Berlin: Springer-Verlag

[22]

Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (With a supplementary chapter by Katok and Leonardo Mendoza), Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, Cambridge, 1995.

[23]

Krishnan V. A support theorem for the geodesic ray transform on functions. J. Fourier Anal. Appl., 2009, 15: 515-520

[24]

Krishnan V. On the inversion formulas of Pestov and Uhlmann for the geodesic ray transform. J. Inverse Ill-posed Probl., 2010, 18: 401-408

[25]

Krishnan V, Stefanov P. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3: 453-464

[26]

Michel R. Sur la rigidité imposée par la longueur des géodésiques. Invent. Math., 1981, 65: 71-83

[27]

Mukhometov R G. The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry (in Russian). Dokl. Akad. Nauk SSSR, 1977, 232(1): 32-35

[28]

Novikov R. An inversion formula for the attenuated X-ray transformation. Ark. Mat., 2002, 40: 145-167

[29]

Novikov R. On determination of a gauge field on ℝd from its non-abelian Radon transform along oriented straight lines. J. Inst. Math. Jussieu, 2002, 1: 559-629

[30]

Paternain G P. Uhlmann G. Inverse problems for connections, Inverse Problems and Applications: Inside Out II. MSRI Publications, 60, 2013, Cambridge: Cambridge University Press

[31]

Paternain G P. Transparent connections over negatively curved surfaces. J. Mod. Dyn., 2009, 3: 311-333

[32]

Paternain G P, Salo M, Uhlmann G. Tensor tomography on simple surfaces. Invent. Math., 2013, 193: 229-247

[33]

Paternain G P, Salo M, Uhlmann G. The attenuated ray transform for connections and Higgs fields. Geom. Funct. Anal., 2012, 22: 1460-1489

[34]

Paternain G P, Salo M, Uhlmann G. Spectral rigidity and inariant distributions on Anosov surfaces, 2012

[35]

Paternain G P, Salo M, Uhlmann G. On the range of the attenuated ray transform for unitary connections. Int. Math. Res. Not., 2013

[36]

Pestov L. Well-posedness Questions of the Ray Tomography Problems (in Russian), 2003, Novosibirsk: Siberian Science Press

[37]

Pestov L, Sharafutdinov V A. Integral geometry of tensor fields on a manifold of negative curvature. Siberian Math. J., 1988, 29: 427-441

[38]

Pestov L, Uhlmann G. On characterization of the range and inversion formulas for the geodesic X-ray transform. Int. Math. Res. Not., 2004, 2004(80): 4331-4347

[39]

Pestov L, Uhlmann G. Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math., 2005, 161: 1089-1106

[40]

Ruggiero R O. On the creation of conjugate points. Math. Z., 1991, 208: 41-55

[41]

Salo M, Uhlmann G. The attenuated ray transform on simple surfaces. J. Diff. Geom., 2011, 88: 161-187

[42]

Sharafutdinov V A. Integral geometry of tensor fields, Inverse and Ill-Posed Problems Series, 1994, Utrecht: VSP

[43]

Sharafutdinov V A. Integral geometry of a tensor field on a surface of revolution. Siberian Math. J., 1997, 38: 603-620

[44]

Sharafutdinov V A. On an inverse problem of determining a connection on a vector bundle. J. Inverse and Ill-Posed Problems, 2000, 8: 51-88

[45]

Sharafutdinov V A. A problem in integral geometry in a nonconvex domain. Siberian Math. J., 2002, 43: 1159-1168

[46]

Sharafutdinov V A. Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds. J. Geom. Anal., 2007, 17: 147-187

[47]

Sharafutdinov V A, Skokan M, Uhlmann G. Regularity of ghosts in tensor tomography. J. Geom. Anal., 2005, 15: 517-560

[48]

Singer I M, Thorpe J A. Lecture notes on elementary topology and geometry, 1976, New York, Heidelberg: Springer-Verlag

[49]

Stefanov P. A sharp stability estimate in tensor tomography, J. of Physics: Conference Series. Proceeding of the First International Congress of the IPIA, 2008, 124: 012007

[50]

Stefanov P, Uhlmann G. Rigidity for metrics with the same lengths of geodesics. Math. Res. Lett., 1998, 5: 83-96

[51]

Stefanov P, Uhlmann G. Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J., 2004, 123: 445-467

[52]

Stefanov P, Uhlmann G. Boundary rigidity and stability for generic simple metrics. Journal Amer. Math. Soc., 2005, 18: 975-1003

[53]

Stefanov P, Uhlmann G. Integral geometry of tensor fields on a class of non-simple Riemannian manifolds. American J. Math., 2008, 130: 239-268

[54]

Stefanov P, Uhlmann G. The geodesic X-ray transform with fold caustics. Analysis and PDE, 2012, 5: 219-260

[55]

Uhlmann G. The Cauchy data and the scattering relation, Geometric Methods in Inverse Problems and PDE Control, IMA Publications, 2003, 137: 263-288

[56]

Uhlmann G, Vasy A. The inverse problem for the local geodesic ray transform, 2012

AI Summary AI Mindmap
PDF

347

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/