A dwindling filter algorithm with a modified subproblem for nonlinear inequality constrained optimization

Chao Gu , Detong Zhu

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 209 -224.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 209 -224. DOI: 10.1007/s11401-014-0826-z
Article

A dwindling filter algorithm with a modified subproblem for nonlinear inequality constrained optimization

Author information +
History +
PDF

Abstract

The authors propose a dwindling filter algorithm with Zhou’s modified subproblem for nonlinear inequality constrained optimization. The feasibility restoration phase, which is always used in the traditional filter method, is not needed. Under mild conditions, global convergence and local superlinear convergence rates are obtained. Numerical results demonstrate that the new algorithm is effective.

Keywords

Modified subproblem / Dwindling filter / Feasibility restoration phase / Convergence / Constrained optimization

Cite this article

Download citation ▾
Chao Gu, Detong Zhu. A dwindling filter algorithm with a modified subproblem for nonlinear inequality constrained optimization. Chinese Annals of Mathematics, Series B, 2014, 35(2): 209-224 DOI:10.1007/s11401-014-0826-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen, Y. and Sun, W., A dwindling filter line search method for unconstrained optimization, Technical Report of Optimization No. 2010-09-01, School of Mathematical Science, Nanjing Normal University, Nanjing.

[2]

Dolan E D, Moré J J. Benchmarking optimization software with performance profiles. Math. Program., 2002, 91: 201-213

[3]

Fletcher R, Leyffer S. Nonlinear programming without a penalty function. Math. Program., 2002, 91: 239-269

[4]

Gu C, Zhu D. A secant algorithm with line search filter method for nonlinear optimization. Appl. Math. Modell., 2011, 35: 879-894

[5]

Hock W, Schittkowski K. Test examples for nonlinear programming codes, 1981, New York: Springer-Verlag

[6]

Jian J B, Liu Y. A superlinearly convergent method of quasi-strongly sub-feasible directions with active set identifying for constrained optimization. Nonlinear Anal. Real World Appl., 2011, 12: 2717-2729

[7]

Long J, Ma C F, Nie P Y. A new filter method for solving nonlinear complementarity problems. Appl. Math. Comput., 2007, 185: 705-718

[8]

Li C, Sun W. On filter-successive linearization methods for nonlinear semidefinite programming. Sci. China Ser. A, 2009, 52: 2341-2361

[9]

Nie P Y. Sequential penalty quadratic programming filter methods for nonlinear programming. Nonlinear Anal. Real World Appl, 2007, 8: 118-129

[10]

Nie P Y. A derivative-free method for the system of nonlinear equations. Nonlinear Anal. Real World Appl., 2006, 7: 378-384

[11]

Nie P Y, Ma C F. A trust region filter mehtod for general nonlinear programming. Appl. Math. Comput., 2006, 172: 1000-1017

[12]

Nocedal J, Wright S. Numerical Optimization, 1999, New York: Springer-Verlag

[13]

Shen C G, Xue W J, Pu D G. A filter SQP algorithm without a feasibility restoration phase. Comp. Appl. Math., 2009, 28: 167-194

[14]

Su K, Yu Z. A modified SQP method with nonmonotone technique and its global convergence. Comput. Math. Appl., 2009, 57: 240-247

[15]

Su K. A globally and superlinearly convergent modified SQP-filter method. J. Global Optim., 2008, 41: 203-217

[16]

Wächter A, Biegler L T. Line search filter methods for nonlinear programming: Motivation and global convergence. SIAM J. Optim., 2005, 6: 1-31

[17]

Wächter A, Biegler L T. Line search filter methods for nonlinear programming: Local convergence. SIAM J. Optim., 2005, 6: 32-48

[18]

Wächter A, Biegler L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program., 2006, 106: 225-57

[19]

Zhou G L. A modified SQP method and its global convergence. J. Global Optim., 1997, 11: 193-205

[20]

Zhu Z B, Wang S. A superlinearly convergent numerical algorithm for nonlinear programming. Nonlinear Anal. Real World Appl., 2012, 13: 2391-2402

[21]

Zhu Z B, Jian J B. An efficient feasible SQP algorithm for inequality constrained optimization. Nonlinear Anal. Real World Appl., 2009, 10: 1220-1228

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/