f-Harmonic morphisms between Riemannian manifolds

Yelin Ou

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 225 -236.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 225 -236. DOI: 10.1007/s11401-014-0825-0
Article

f-Harmonic morphisms between Riemannian manifolds

Author information +
History +
PDF

Abstract

f-Harmonic maps were first introduced and studied by Lichnerowicz in 1970. In this paper, the author studies a subclass of f-harmonic maps called f-harmonic morphisms which pull back local harmonic functions to local f-harmonic functions. The author proves that a map between Riemannian manifolds is an f-harmonic morphism if and only if it is a horizontally weakly conformal f-harmonic map. This generalizes the well-known characterization for harmonic morphisms. Some properties and many examples as well as some non-existence of f-harmonic morphisms are given. The author also studies the f-harmonicity of conformal immersions.

Keywords

f-Harmonic maps / f-Harmonic morphisms / F-Harmonic maps / Harmonic morphisms / p-Harmonic morphisms

Cite this article

Download citation ▾
Yelin Ou. f-Harmonic morphisms between Riemannian manifolds. Chinese Annals of Mathematics, Series B, 2014, 35(2): 225-236 DOI:10.1007/s11401-014-0825-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ababou R, Baird P, Brossard J. Polynômes semi-conformes et morphismes harmoniques. Math. Z., 1999, 231(3): 589-604

[2]

Ara M. Geometry of F-harmonic maps. Kodai Math. J., 1999, 22(2): 243-263

[3]

Baird P, Gudmundsson S. p-harmonic maps and minimal submanifolds. Math. Ann., 1992, 294: 611-624

[4]

Baird P, Wood J C. Harmonic morphisms between Riemannian manifolds, 2003, Oxford: Oxford Univ. Press

[5]

Cieślński J, Goldstein P, Sym A. On integrability of the inhomogeneous Heisenberg ferromagnet model: Examination of a new test. J. Phys. A: Math. Gen., 1994, 27: 1645-1664

[6]

Cieślński J, Sym A, Wesselius W. On the geometry of the inhomogeneous Heisenberg ferromagnet: Non-integrable case. J. Phys. A: Math. Gen., 1993, 26: 1353-1364

[7]

Course N. f-harmonic maps, 2004, Coventry, CV47AL, UK: University of Warwick

[8]

Course N. f-Harmonic maps which map the boundary of the domain to one point in the target. New York J. Math, 2007, 13: 423-435

[9]

Daniel M, Porsezian K, Lakshmanan M. On the integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnet in arbitrary dimension. J. Math. Phys., 1994, 35(10): 6498-6510

[10]

Eells J, Lemaire L. A report on harmonic maps. Bull. London Math. Soc., 1978, 10: 1-68

[11]

Fuglede B. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier (Grenoble), 1978, 28: 107-144

[12]

Gudmundsson S. The geometry of harmonic morphisms, 1992, UK: University of Leeds

[13]

Heller S. Harmonic morphisms on conformally flat 3-spheres. Bull. London Math. Soc., 2011, 43(1): 137-150

[14]

Huang P, Tang H. On the heat flow of f-harmonic maps from D 2 into S 2. Nonlinear Anal., 2007, 67(7): 2149-2156

[15]

Ishihara T. A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ., 1979, 19(2): 215-229

[16]

Lakshmanan M, Bullough R K. Geometry of generalised nonlinear Schrödinger and Heisenberg ferromagnetic spin equations with x-dependent coefficients. Phys. Lett. A, 1980, 80(4): 287-292

[17]

Li Y X, Wang Y D. Bubbling location for f-harmonic maps and inhomogeneous Landau-Lifshitz equations. Comment. Math. Helv., 2006, 81(2): 433-448

[18]

Lichnerowicz A. Applications harmoniques et variétés kähleriennes, Symposia Mathematica III, 1970, London: Academic Press 341-402

[19]

Loubeau E. On p-harmonic morphisms. Diff. Geom. and Its Appl., 2000, 12: 219-229

[20]

Manfredi J, Vespri V. n-harmonic morphisms in space are Möbius transformations. Michigan Math. J., 1994, 41: 135-142

[21]

Ou Y -L. p-harmonic morphisms, minimal foliations, and rigidity of metrics. J. Geom. Phys., 2004, 52(4): 365-381

[22]

Ou Y -L, Wilhelm F. Horizontally homothetic submersions and nonnegative curvature. Indiana Univ. Math. J., 2007, 56(1): 243-261

[23]

Ouakkas S, Nasri R, Djaa M. On the f-harmonic and f-biharmonic maps. JP J. Geom. Topol., 2010, 10(1): 11-27

[24]

Takeuchi H. Some conformal properties of p-harmonic maps and regularity for sphere-valued p-harmonic maps. J. Math. Soc. Japan, 1994, 46: 217-234

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/