Atomic decompositions of Triebel-Lizorkin spaces with local weights and applications

Liguang Liu , Dachun Yang

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 237 -260.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 237 -260. DOI: 10.1007/s11401-014-0824-1
Article

Atomic decompositions of Triebel-Lizorkin spaces with local weights and applications

Author information +
History +
PDF

Abstract

In this paper, the authors characterize the inhomogeneous Triebel-Lizorkin spaces F p,q s,w(ℝ n with local weight w by using the Lusin-area functions for the full ranges of the indices, and then establish their atomic decompositions for s ∈ ℝ, p ∈ (0, 1] and q ∈ [p,∞). The novelty is that the weight w here satisfies the classical Muckenhoupt condition only on balls with their radii in (0, 1]. Finite atomic decompositions for smooth functions in F p,q s,w(ℝ n are also obtained, which further implies that a (sub)linear operator that maps smooth atoms of F p,q s,w(ℝ n uniformly into a bounded set of a (quasi-)Banach space is extended to a bounded operator on the whole F p,q s,w(ℝ n. As an application, the boundedness of the local Riesz operator on the space F p,q s,w(ℝ n is obtained.

Keywords

Local weight / Triebel-Lizorkin space / Atom / Lusin-Area function / Riesz transform

Cite this article

Download citation ▾
Liguang Liu, Dachun Yang. Atomic decompositions of Triebel-Lizorkin spaces with local weights and applications. Chinese Annals of Mathematics, Series B, 2014, 35(2): 237-260 DOI:10.1007/s11401-014-0824-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bui H. Weighted Hardy spaces. Math. Nachr., 1981, 103: 45-62

[2]

Cao W, Chen J, Fan D. Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces. Acta Math. Sin. (Engl. Ser.), 2010, 26: 2071-2084

[3]

Chen J, Yu X, Zhang Y, Wang H. Hypersingular parameterized Marcinkiewicz integrals with variable kernels on Sobolev and Hardy-Sobolev spaces. Appl. Math. J. Chinese Univ. Ser. B, 2008, 23: 420-430

[4]

Frazier M, Jawerth B. Decomposition of Besov spaces. Indiana Univ. Math. J., 1985, 34: 777-799

[5]

Frazier M, Jawerth B. A discrete transform and decompositions of distribution spaces. J. Funct. Anal., 1990, 93: 34-170

[6]

Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces, 1991, Providence, R. I.: Amer. Math. Soc.

[7]

Goldberg D. A local version of real Hardy spaces. Duke Math., 1979, 46: 27-42

[8]

Han Y, Paluszyński M, Weiss G. A new atomic decomposition for the Triebel-Lizorkin spaces. Contemp. Math., 1995, 189: 235-249

[9]

Haroske D D, Piotrowska I. Atomic decompositions of function spaces with muckenhoupt weights, and some relation to fractal analysis. Math. Nachr., 2008, 281: 1476-1494

[10]

Haroske D D, Skrzypczak L. Entropy and approximation numbers of embeddings of function spaces with muckenhoupt weights, I. Rev. Mat. Complut., 2008, 21: 135-177

[11]

Haroske D D, Skrzypczak L. Spectral theory of some degenerate elliptic operators with local singularities. J. Math. Anal. Appl., 2010, 371: 282-299

[12]

Haroske D D, Skrzypczak L. Entropy and approximation numbers of embeddings of function spaces with muckenhoupt weights, II. general weights. Ann. Acad. Sci. Fenn. Math., 2011, 36: 111-138

[13]

Haroske D D, Skrzypczak L. Entropy numbers of embeddings of function spaces with muckenhoupt weights, III. Some limiting cases. J. Funct. Spaces Appl., 2011, 9: 129-178

[14]

Izuki M, Sawano Y. Wavelet bases in the weighted Besov and Triebel-Lizorkin spaces with A p loc-weights. J. Approx. Theory, 2009, 161: 656-673

[15]

Izuki M, Sawano Y. Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces. Math. Nachr., 2012, 285: 103-126

[16]

Izuki M, Sawano Y, Tanaka H. Weighted Besov-Morrey spaces and Triebel-Lizorkin spaces. Harmonic analysis and nonlinear partial differential equations, 21–60, RIMS Kôkyûroku Bessatsu, 2010, Kyoto: Res. Inst. Math. Sci. (RIMS)

[17]

Liu L, Yang D. Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms. Studia Math., 2009, 190: 163-183

[18]

Rychkov V S. Littlewood-Paley theory and function spaces with A p loc weights. Math. Nachr., 2001, 224: 145-180

[19]

Schmeißr H-J, Triebel H. Topics in Fourier Analysis and Function Spaces, 1987, Chichester: John Wiley and Sons, Ltd.

[20]

Schott T. Function spaces with exponential weights, I. Math. Nachr., 1998, 189: 221-242

[21]

Schott T. Function spaces with exponential weights, II. Math. Nachr., 1998, 196: 231-250

[22]

Tang, L., Weighted local Hardy spaces and their applications, Illinois J. Math. (to appear).

[23]

Tang L. Weighted norm inequalities for pseudo-differential operators with smooth symbols and their commutators. J. Funct. Anal., 2012, 262: 1603-1629

[24]

Triebel H. Theory of Function Spaces, 1983, Basel: Birkhäuser Verlag

[25]

Yang D, Yang S. Weighted local Orlicz Hardy spaces with applications to pseudo-differential operators. Dissertationes Math., 2011, 478: 1-78

[26]

Yang D, Zhou Y. Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J. Math. Anal. Appl., 2008, 339: 622-635

[27]

Yang D, Zhou Y. A boundedness criterion via atoms for linear operators in Hardy spaces. Constr. Approx., 2009, 29: 207-218

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/