Inhomogeneous quantum codes (III): The asymmetric case

Weiyang Wang , Keqin Feng

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 271 -284.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 271 -284. DOI: 10.1007/s11401-014-0822-3
Article

Inhomogeneous quantum codes (III): The asymmetric case

Author information +
History +
PDF

Abstract

The stabilizer (additive) method and non-additive method for constructing asymmetric quantum codes have been established. In this paper, these methods are generalized to inhomogeneous quantum codes.

Keywords

Inhomogeneous quantum codes / Mixed classical codes / Asymmetric quantum codes

Cite this article

Download citation ▾
Weiyang Wang, Keqin Feng. Inhomogeneous quantum codes (III): The asymmetric case. Chinese Annals of Mathematics, Series B, 2014, 35(2): 271-284 DOI:10.1007/s11401-014-0822-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aly S A. Asymmetric and symmetric subsystem BCH codes and beyond, 2008

[2]

Calderbank A R, Rains E M, Shor P W, Sloane N J A. Quantum error correction via GF (4). IEEE Transactions on Information Theory, 1998, 44: 1369-1387

[3]

Evans Z W, Stephens A M, Cole J M, Hollenberg L C. Error correction optimisation in the presence of \tfrac{x}{z} asymmetry, 2007

[4]

Wang W, Feng R, Feng K. Inhomogenous quantum codes (I): additive case. Sci. China Math., 2010, 53: 2501-2510

[5]

Feng K, Ling S, Xing C. Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Transactions on Information Theory, 2006, 52: 986-991

[6]

Feng K, Xing C. A new construction of quantum error-correcting codes. Trans. Amer. Math. Soc., 2007, 360: 2007-2019

[7]

Gottesman D. Fault-tolerant quantum computation with high-dimensional systems. Lecture Notes in Computer Science, 1999, 1509: 302-313

[8]

Ioffe L, Mezard M M. Asymmetric quantum error-correcting codes. Phys. Rev. A, 2007, 75(3): 032345

[9]

Rains E M. Quantum weight enumerators. IEEE Transactions on Information Theory, 1998, 44: 1388-1394

[10]

Sarvepalli P K, Klappenecker A, Rotteler M. Asymmetric quantum LDPC codes. IEEE International Symposium on Information Theory (ISIT 2008), 2008 305-309

[11]

Shor P W. Scheme for reducing decoherence in quantum memory. Phys. Rev. A, 1995, 52(4): 2493-2496

[12]

Steane A M. Multiple particle interference and quantum error correction. Proc. Roy. Soc. London A, 1996, 452: 2551-2557

[13]

Steane A M. Error correcting codes in quantum theory. Phys. Rev. Lett., 1996, 77(5): 793-797

[14]

Stephens A M, Evans Z W, Devitt S J, Hollenberg C L. Asymmetric quantum error correction via code conversion. Phys. Rev. A, 2008, 77(6): 62335

[15]

Wang W, Feng K. Inhomogeneous quantum codes (II): non-additive case. Front. Math. China, 2012

[16]

Wang L, Feng K, Ling S, Xing C. Asymmetric quantum codes: characterization and constructions. IEEE Transactions on Informatin Theory, 2010, 56(6): 2938-2945

[17]

Herzog M, Schonheim J. Group partition, factorization and the vector covering problem. Canad. Math. Bull., 1972, 15: 207-214

[18]

Lindstrom B. Group partitions and mixed perfect codes. Canad. Math. Bull., 1975, 18: 57-60

[19]

Feng K, Xu L, Hickernell F J. Linear error-block codes. Finite Fields and Their Applications, 2006, 12: 638-652

[20]

Blinco A D, El-Zanati S I, Seelinger G F On vector apsce patitions and uniformly resolvable designs. Designs, Codes and Cryptography, 2008, 48: 69-77

[21]

El-Zanati S I, Seelinger G F, Sissokho P A On partitions of finite vector spaces of small dimention over GF(2). Discrete Mathematics, 2009, 309: 4727-4735

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/