Local smooth solutions to the 3-dimensional isentropic relativistic Euler equations
Yongcai Geng , Yachun Li
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 301 -318.
Local smooth solutions to the 3-dimensional isentropic relativistic Euler equations
The authors consider the local smooth solutions to the isentropic relativistic Euler equations in (3+1)-dimensional space-time for both non-vacuum and vacuum cases. The local existence is proved by symmetrizing the system and applying the Friedrichs-Lax-Kato theory of symmetric hyperbolic systems. For the non-vacuum case, according to Godunov, firstly a strictly convex entropy function is solved out, then a suitable symmetrizer to symmetrize the system is constructed. For the vacuum case, since the coefficient matrix blows-up near the vacuum, the authors use another symmetrization which is based on the generalized Riemann invariants and the normalized velocity.
Isentropic relativistic Euler equations / local-in-time smooth solutions / Strictly convex entropy / Generalized Riemann invariants
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
Taub, A. H., lativistic hydrodynamics, relativistic theory and astrophysics 1, Relativity and Cosmology, Ehlers, J. (ed.), A. M. S., Providence, RI, 1967, 170–193. |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
/
| 〈 |
|
〉 |