Local smooth solutions to the 3-dimensional isentropic relativistic Euler equations

Yongcai Geng , Yachun Li

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 301 -318.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (2) : 301 -318. DOI: 10.1007/s11401-014-0820-5
Article

Local smooth solutions to the 3-dimensional isentropic relativistic Euler equations

Author information +
History +
PDF

Abstract

The authors consider the local smooth solutions to the isentropic relativistic Euler equations in (3+1)-dimensional space-time for both non-vacuum and vacuum cases. The local existence is proved by symmetrizing the system and applying the Friedrichs-Lax-Kato theory of symmetric hyperbolic systems. For the non-vacuum case, according to Godunov, firstly a strictly convex entropy function is solved out, then a suitable symmetrizer to symmetrize the system is constructed. For the vacuum case, since the coefficient matrix blows-up near the vacuum, the authors use another symmetrization which is based on the generalized Riemann invariants and the normalized velocity.

Keywords

Isentropic relativistic Euler equations / local-in-time smooth solutions / Strictly convex entropy / Generalized Riemann invariants

Cite this article

Download citation ▾
Yongcai Geng, Yachun Li. Local smooth solutions to the 3-dimensional isentropic relativistic Euler equations. Chinese Annals of Mathematics, Series B, 2014, 35(2): 301-318 DOI:10.1007/s11401-014-0820-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anile A M. Relativistic Fluids and Magneto-Fluids, 1989, New York: Cambridge Monographs on Mathematical Physics, Cambridge University Press

[2]

Chen G Q, Li Y C. Stability of Riemann solutions with oscillation for the relativistic Euler equations. J. Diff. Eq., 2004, 202: 332-353

[3]

Chen G Q, Li Y C. Relativistic Euler equations for isentropic fluids: stability of Riemann solutions with large oscillation. Z. Angew. Math. Phys., 2004, 55: 903-926

[4]

Chen J. Conservation laws for relativistic p-system. Commu. Part. Diff. Eq., 1995, 20: 1605-1646

[5]

Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics, 2000, Berlin: Spring-Verlag

[6]

Frid H, Perepelista M. Spatially periodic solutions in relativistic isentropic gas dynamics. Commun. Math. Phys., 2004, 250: 335-370

[7]

Geng Y C, Li Y C. Non-relativistic global limits of entropy solutions to the extremely relativistic Euler equations. Z. Angew. Math. Phys., 2010, 61: 201-220

[8]

Geng Y C, Li Y C. Special relativistic effects revealed in the Riemann problem for three-dimensional relativistic Euler equations. Z. Angew. Math. Phys., 2011, 62: 281-304

[9]

Godunov S K. An interesting class of quasilinear systems. Dokl. Acad. Nauk. SSSR, 1961, 139: 521-523

[10]

Guo Y, Tahhvildar-Zadeh S. Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics. Cntemp. Math., 2009, 238: 151-161

[11]

Hao X W, Li Y C. Non-relativistic global limits of entropy solutions to the Cauchy problem of the three dimensional relativistic Euler equations with spherical symmetry. Commun. Pure Appl. Anal., 2010, 9: 365-386

[12]

Hsu C H, Lin S, Makino T. Spherically symmetric solutions to the compressible Euler equation with an asymptotic γ-law. Japan J. Indust. Appl. Math., 2003, 20: 1-15

[13]

Hsu C H, Lin S, Makino T. On spherically symmetric solutions of the relativistic Euler equation. J. Diff. Eq., 2004, 201: 1-24

[14]

Kato T. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal., 1975, 58: 181-205

[15]

Kunik M, Qamar S, Warnecke G. Kinetic schemes for the ultra-relativistic Euler equations. J. Comput. Phys., 2003, 187: 572-596

[16]

Kunik M, Qamar S, Warnecke G. Second-order accurate kinetic schemes for the relativistic Euler equations. J. Comput. Phys., 2003, 192: 695-726

[17]

Kunik M, Qamar S, Warnecke G. Kinetic schemes for the relativistic gas dynamics. Numer. Math., 2004, 97: 159-191

[18]

Landau L D, Lifchitz E M. Fluid Mechanics, 1987 2nd edition New York: Pergamon Press 505-512

[19]

Lefloch P, Ukai S. A symmetrization of the relativistic Euler equations in sevaral spatial variables. Kinet. Relat. Modles., 2009, 2: 275-292

[20]

Li Y C, Feng D, Wang Z. Global entropy solutions to the relativistic Euler equations for a class of large initial data. Z. Angew. Math. Phys., 2005, 56: 239-253

[21]

Li Y C, Geng Y. Non-relativistic global limits of Entropy solutions to the isentropic relativistic Euler equations. Z. Angew. Math. Phys., 2006, 57: 960-983

[22]

Li Y C, Ren X. Non-relativistic global limits of entropy solutions to the relativistic euler equations with γ-law. Commun. Pure Appl. Anal., 2006, 5: 963-979

[23]

Li Y C, Shi Q. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Commun. Pure Appl. Anal., 2005, 4: 763-778

[24]

Li Y C, Wang A. global entropy solutions of the cauchy problem for the nonhomogeneous relativistic Euler equations. Chin. Ann. Math., 2006, 27B(5): 473-494

[25]

Li Y C, Wang L. Global stability of solutions with discontinuous initial containing vaccum states for the relativistic Euler equations. Chin. Ann. Math., 2005, 26B(4): 491-510

[26]

Li T T, Qin T. Physics and Parital Differential Equations (in Chinese), 2005 2nd edition Beijing: Higher Eudcation Press

[27]

Liang E P T. Relativistic simple waves: Shock damping and entropy production. Astrophys. J., 1977, 211: 361-376

[28]

Majda A. Compressible fluid flow and systems of conversation laws in several space variable. Comm. Pure Appl. Math., 1975, 28: 607-676

[29]

Makino T, Ukai S. Local smooth solutions of the relativistic Euler equation. J. Math. Kyoto Univ., 1995, 35: 105-114

[30]

Makino T, Ukai S. Local smooth solutions of the relativistic Euler equation II. Kodai Math. J., 1995, 18: 365-375

[31]

Makino T, Ukai S, Kawashima S. Sur la solutions à support compact de l’équation d’Euler compressible.. Japen J. Appl. Math., 1986, 3: 249-257

[32]

Min L, Ukai S. Non-relativistic global limits of weak solutions of the relativistic Euler equation. J. Math. Kyoto. Univ., 1995, 38: 525-537

[33]

Misner C W, Thorne K S, Wheeler J A. Gravitation, 1973, San Fransisco: Freeman

[34]

Mizohata K. Global solutions to the relativistic Euler equation with spherical symmetry. Japan J. Indust. Appl. Math., 1997, 14: 125-157

[35]

Pan R, Smoller J. Blowup of smooth solutions for relativistic Euler equations. Commun. Math. Phys., 2006, 262: 729-55

[36]

Pant V. Global entropy solutions for isentropic relativistic fluid dynamics. Commu. Part. Diff. Eq., 1996, 21: 1609-1641

[37]

Rendall A. Local and global existence theorems for the Einstein equations. Living Rev. Rel., 2000, 3: 1-35

[38]

Ruan L, Zhu C. Existence of global smooth solution to the relativistic Euler equations. Nonlinear Analysis, 2005, 60: 993-1001

[39]

Shi C C. Relativistic Fluid Dynamics, 1992, Beijing: Science Press 161-232

[40]

Smoller J, Temple B. Global solutions of the relativistic Euller equation. Commun. Math. Phys., 1993, 156: 67-99

[41]

Taub A H. Relativistic Rankine-Hügoniot equations. Phys. Rev., 1948, 74: 328-334

[42]

Taub A H. Approximate solutions of the Einstein equations for isentropic motions of plane symmetric distributions of perfect fluids. Phys. Rev., 1957, 107: 884-900

[43]

Taub, A. H., lativistic hydrodynamics, relativistic theory and astrophysics 1, Relativity and Cosmology, Ehlers, J. (ed.), A. M. S., Providence, RI, 1967, 170–193.

[44]

Thompson K. The special relativistic shock tube. J. Fluid Mech., 1986, 171: 365-375

[45]

Thorne K S. Relativistic shocks: The Taub adiabatic. Astrophys. J., 1973, 179: 897-907

[46]

Weinberg S. Gravitation and Cosmology: Applications of the General Theory of Relativity, 1972, New York: Wiley

[47]

Whitham G B. Linear and Non-linear Waves, 1974, New York: Wiley

[48]

Xu Y, Dou Y. Global existence of shock front solutions in 1-dimensional piston problem in the relativistic equations. Z. Angew. Math. Phys., 2008, 59: 244-263

[49]

Yin G, Sheng W. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations. Chin. Ann. Math., 2008, 29B(6): 611-622

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/