h — P Finite element approximation for full-potential electronic structure calculations

Yvon Maday

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 1 -24.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 1 -24. DOI: 10.1007/s11401-013-0819-3
Article

h — P Finite element approximation for full-potential electronic structure calculations

Author information +
History +
PDF

Abstract

The (continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood. In this publication, the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh, where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular. This combination of increase of approximation properties, done in an a priori or a posteriori manner, is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular. The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.

Keywords

Electronic structure calculation / Density functional theory / Hartree-Fock model / Kohn-Sham model / Nonlinear eigenvalue problem / h — P version / Finite element method

Cite this article

Download citation ▾
Yvon Maday. h — P Finite element approximation for full-potential electronic structure calculations. Chinese Annals of Mathematics, Series B, 2014, 35(1): 1-24 DOI:10.1007/s11401-013-0819-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anantharaman A, Cancès E. Existence of minimizers for Kohn-Sham models in quantum chemistry. Ann. Inst. Henri Poincaré, 2009, 26: 2425-2455

[2]

Bao G, Hu G, Liu D. An h-adaptive finite element solver for the calculation of the electronic structures. J. Comp. Phys., 2012, 231: 4967-4979

[3]

Babuška I, Suri M. The hP and h — P versions of the finite element method, an overview. Comput. Methods Appl. Mech. Engrg., 1990, 80(1): 5-26

[4]

Bernardi C, Maday Y. Polynomial approximation of some singular functions. Appl. Anal., 1991, 42(1–4): 1-32

[5]

Born M, Oppenheimer J R. Zur Quantentheorie der Molekeln. Ann. Physik, 1927, 84: 457-484

[6]

Bylaska E J, Host M, Weare J H. Adaptive finite element method for solving the exact Kohn-Sham equation of density functional theory. J. Chem. Theory Comput., 2009, 5: 937-948

[7]

Cancès E, Chakir R, Maday Y. Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comp., 2010, 45(1–3): 90-117

[8]

Cancès E, Chakir R, Maday Y. Numerical analysis of the plane wave discretization of some orbitalfree and Kohn-Sham models. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46(2): 341-388

[9]

Cancès E, Defranceschi M, Kutzelnigg W Computational quantum chemistry: a primer, Handbook of Numerical Analysis, Vol. X, 2003, Amsterdam: North-Holland 3-270

[10]

Cancès E, Le Bris C, Maday Y. Méthodes Mathématiques en Chimie Quantique, 2006, New York: Springer-Verlag

[11]

Cances E, Le Bris C, Nguyen N C Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry. Proceedings of the Workshop for Highdimensional Partial Differential Equations in Science and Engineering, Montreal, 2007

[12]

Cancès E, Stoltz G, Staroverov V N Local exchange potentials for electronic structure calculations. Mathematics in Action, 2009, 2: 1-42

[13]

Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods: Fundamentals in Single Domains, 2006, New York: Springer-Verlag

[14]

Chen, H., Gong, X., He, L. and Zhou, A., Convergence of adaptive finite element approximations for nonlinear eigenvalue problems, preprint. http://arxiv.org/pdf/1001.2344

[15]

Chen H, Gong X, Zhou A. Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model. M2AS, 2010, 33: 1723-1742

[16]

Chen, H. and Schneider, R., Numerical Analysis of Augmented Plane Waves Methods for Full-Potential Electronic Structure Calculations, preprint, 116. http://www.dfg-spp1324.de

[17]

Math. Mod. Meth. Appl. Sci., 2012, 22 8

[18]

Dreizler R M, Gross E K U. Density Functional Theory, 1990, Berlin: Springer-Verlag

[19]

Edelman A, Arias T A, Smith S T. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 1998, 20: 303-353

[20]

Gavini V, Knap J, Bhattacharya K, Ortiz M. Non-periodic finite element formulation of orbital-free density functional theory. J. Mech. Phys. Solids, 2007, 55: 669-696

[21]

Fang J, Gao X, Zhou A. A Kohn-Sham equation solver based on hexahedral finite elements. J. Comp. Phys., 2012, 231: 3166-3180

[22]

Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Østergaard Søensen T. The electron density is smooth away from the nuclei. Commun. Math. Phy., 2002, 228(3): 401-415

[23]

Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Østergaard Søensen T. Analyticity of the density of electronic wavefunctions. Arkiv fr Matematik, 2004, 42(1): 87-106

[24]

Fournais S, Srensen T. conditions and regularity of the electron density of molecules at the nuclei. Annales Henri Poincare, 2007, 8(4): 731-748

[25]

Gaussian web site. http://www.gaussian.com

[26]

Gui W, Babuška I. The h, P and h — P versions of the finite element method in 1 dimension. Numerische Mathematik, 1986, 49(6): 577-683

[27]

Guo B, Babuška I. The h — P version of the finite element method. Comp. Mech., 1986, 1(1): 21-41

[28]

Hermannson B, Yevick D. Finite-element approach to band-structure analysis. Phys. Rev. B, 1986, 33: 7241-7242

[29]

Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Søensen T. for atoms. Annales Henri Poincaré, 2001, 2(1): 77-100

[30]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev., 1964, 136: B864-B871

[31]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140: A1133-A1138

[32]

Langwallner B, Ortner C, Süli E. Existence and convergence results for the Galerkin approximation of an electronic density functional. M3AS, 2010, 20: 2237-2265

[33]

Le Bris, C., PhD Thesis, Ecole Polytechnique, Paris, 1993.

[34]

Lehtovaara L, Havu V, Puska M. All-electron density functional theory and time-dependent density functional theory with high-order finite elements. J. Chem. Phys., 2009, 131: 054103

[35]

Lester W A Jr. Recent Advances in Quantum Monte Carlo Methods, 1997, Singapore: World Sientific

[36]

Lester W A Jr. Rothstein S M, Tanaka S. Recent advances in Quantum Monte Carlo methods, Part II, 2002, Singapore: World Sientific

[37]

Levy M. Universal variational functionals of electron densities, first order density matrices, and natural spin-orbitals and solution of the V-representability problem. Proc. Natl. Acad. Sci. USA, 1979, 76: 6062-6065

[38]

Lieb E H. Density functional for coulomb systems. Int. J. Quant. Chem., 1983, 24: 243-277

[39]

Lin L, Lu J F, Ying L X, E W N. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation. J. Comp. Phys., 2012, 231(4): 2140-2154

[40]

Maday Y, Razafison U. A reduced basis method applied to the Restricted Hartree-Fock equations. Comptes Rendus Mathematique, 2008, 346(3): 243-248

[41]

Maday Y, Turinici G. Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math., 2003, 94: 739-770

[42]

Martin R M. Electronic Structure: Basic Theory and Practical Methods, 2004, Cambridge: Cambridge University Press

[43]

Masud A, Kannan R. B-splines and NURBS based finite element methods for Kohn-Sham equations. Comput. Methods Appl. Mech. Engrg., 2012, 241: 112-127

[44]

Motamarri P, Nowak M R, Leiter K Higher-order adaptive finite element methods for Kohn-Sham density functional theory, 2012

[45]

Pask J E, Klein B M, Fong C Y, Sterne P A. Real-space local polynomial basis for solid-state electronic-structure calculations: a finite element approach. Phys. Rev. B, 1999, 59: 12352-12358

[46]

Pask J E, Klein B M, Sterne P A, Fong C Y. Finite element methods in electronic-structure theory. Comp. Phys. Comm., 2001, 135: 134

[47]

Pask J E, Sterne P A. Finite element methods in ab initio electronic structure calculations. Mod. Sim. Mat. Sci. Eng., 2005, 13: R71-R96

[48]

Schötzau D, Schwab C, Wihler T. hp-dGFEM for second-order elliptic problems in polyhedra. I: Stability and quasioptimality on geometric meshes. Technical Report 2009-28, 2009, Zrich: SAM-ETH

[49]

Schötzau D, Schwab C, Wihler T P. hp-dGFEM for second-order elliptic problems in polyhedra. II: Exponential convergence. Technical report 2009-29, 2009, Zrich: SAM-ETH

[50]

Singh D J, Nordstrom L. Plane waves, Pseudopotentials, and the LAPW Method, 2005, New York: Springer-Verlag

[51]

Suryanarayana P, Gavini V, Blesgen T Non-periodic finite element formulation of Kohn-Sham density functional theory. J. Mech. Phys. Solids, 2010, 58: 256-280

[52]

Tomasi J, Persico M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev., 1994, 94(7): 2027-2094

[53]

Tsuchida E, Tsukada M. Electronic-structure calculations based on the finite element method. Phys. Rev. B, 1995, 52: 5573-5578

[54]

Tsuchida E, Tsukada M. Adaptive finite element method for electronic structure calculations. Phys. Rev. B, 1996, 54: 7602-7605

[55]

Tsuchida E, Tsukada M. Large-scale electronic-structure calculations based on the adaptive finite element method. J. Phys. Soc. Jpn., 1998, 67: 3844-3858

[56]

Valone S. Consequences of extending 1 matrix energy functionals from purestate representable to all ensemble representable 1 matrices. J. Chem. Phys., 1980, 73: 1344-1349

[57]

Vos P E J, Spencer S, Kirby R M. From h to P efficiently: Implementing finite and spectral/h — P element methods to achieve optimal performance for low-and high-order discretisations. J. Comput. Phys., 2010, 229(13): 5161-5181

[58]

White S R, Wilkins J W, Teter M P. Finite element method for electronic structure. Phys. Rev. B, 1989, 39: 5819-5830

[59]

Zhang D, Shen L, Zhou A, Gong X. Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh. Phys. Lett. A, 2008, 372: 5071-5076

[60]

Zhou A. Finite dimensional approximations for the electronic ground state solution of a molecular system. Math. Meth. App. Sci., 2007, 30: 429-447

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/