Limit cycles bifurcating from a quadratic reversible Lotka-Volterra system with a center and three saddles

Kuilin Wu , Haihua Liang

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 25 -32.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 25 -32. DOI: 10.1007/s11401-013-0818-4
Article

Limit cycles bifurcating from a quadratic reversible Lotka-Volterra system with a center and three saddles

Author information +
History +
PDF

Abstract

This paper is concerned with limit cycles which bifurcate from a period annulus of a quadratic reversible Lotka-Volterra system with sextic orbits. The authors apply the property of an extended complete Chebyshev system and prove that the cyclicity of the period annulus under quadratic perturbations is equal to two.

Keywords

Reversible Lotka-Volterra systems / Abelian integrals / Limit cycles

Cite this article

Download citation ▾
Kuilin Wu, Haihua Liang. Limit cycles bifurcating from a quadratic reversible Lotka-Volterra system with a center and three saddles. Chinese Annals of Mathematics, Series B, 2014, 35(1): 25-32 DOI:10.1007/s11401-013-0818-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold V I. Some unsolved problems in the theory of differential equations and mathematical physics. Russian Math. Surveys, 1989, 44: 157-171

[2]

Arnold V I. Arnold’s Problems, 2005, Berlin: Springer-Verlag

[3]

Chicone C, Jacobs M. Bifurcation of limit cycles from quadratic isochronous. J. Differential Equations, 1991, 91: 268-326

[4]

Gautier S, Gavrilov L, Iliev I D. Perturbations of quadratic centers of genus one. Discrete Contin. Dyn. Syst., 2009, 25: 511-535

[5]

Grau M, Mañosas F, Villadelprat J. A Chebyshev criterion for Abelian integrals. Trans. Amer. Math. Soc., 2011, 363: 109-129

[6]

Hilbert D. Mathematische Problem (Lecture), Second Internat. Congress Math. Paris 1900. Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1900 253-297

[7]

Iliev I D. The cyclicity of the period annulus of the quadratic Hamiltonian triangle. J. Differential Equations, 1996, 128: 309-326

[8]

Iliev I D. Perturbations of quadratic centers. Bull. Sci. Math., 1998, 122: 107-161

[9]

Ilyashenko Y. Centennial history of Hilbert’s 16th problem. Bull. Amer. Math. Soc., 2002, 39: 301-354

[10]

Karlin S, Studden W. Tchebycheff Systems: With Applications in Analysis and Statistics, 1966, New York: Interscience Publishers

[11]

Li C, Llibre J. The cyclicity of period annulus of a quadratic reversible Lotka-Volterra system. Nonlinearity, 2009, 22: 2971-2979

[12]

Li J. Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2003, 13: 47-106

[13]

Mardešić P. Chebyshev Systems and the Versal Unfolding of the Cusp of Order n. Travaux en Cours, 57, 1998, Paris: Hermann

[14]

Shao Y, Zhao Y. The cyclicity and period function of a class of quadratic reversible Lotka-Volterra system of genus one. J. Math. Anal. Appl., 2011, 377: 817-827

[15]

Zhao Y, Zhang Z. Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians. J. Differential Equations, 1999, 155: 73-88

[16]

Zhao Y. On the number of limit cycles in quadratic perturbations of quadratic codimension-four centres. Nonlinearity, 2011, 24: 2505-2522

[17]

Zoladek H. Quadratic systems with centers and their perturbations. J. Differential Equations, 1994, 109: 223-273

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/