Generalized symplectic mean curvature flows in almost Einstein surfaces

Jiayu Li , Liuqing Yang

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 33 -50.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 33 -50. DOI: 10.1007/s11401-013-0817-5
Article

Generalized symplectic mean curvature flows in almost Einstein surfaces

Author information +
History +
PDF

Abstract

The authors mainly study the generalized symplectic mean curvature flow in an almost Einstein surface, and prove that this flow has no type-I singularity. In the graph case, the global existence and convergence of the flow at infinity to a minimal surface with metric of the ambient space conformal to the original one are also proved.

Keywords

Almost Einstein / Symplectic mean curvature flow / Singularity / Minimal surface

Cite this article

Download citation ▾
Jiayu Li, Liuqing Yang. Generalized symplectic mean curvature flows in almost Einstein surfaces. Chinese Annals of Mathematics, Series B, 2014, 35(1): 33-50 DOI:10.1007/s11401-013-0817-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behrndt T. Generalized Lagrangian mean curvature flow in Kähler manifolds that are almost Einstein, 2011, Heidelberg, New York: Springer-Verlag 65-80

[2]

Chen J, Li J. Mean curvature flow of surfaces in 4-manifolds. Adv. Math., 2001, 163: 287-309

[3]

Chen J, Li J. Singularity of mean curvature flow of Lagrangian submanifolds. Invent. Math., 2004, 156(1): 25-51

[4]

Chen J, Li J, Tian G. Two-dimensional graphs moving by mean curvature flow. Acta. Math. Sinica, English Series, 2002, 18: 209-224

[5]

Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer. J. Math., 1983, 105: 59-83

[6]

Han X, Li J. Simplectic critical surfaces in Kähler surfaces. J. Eur. Math. Soc., 2010, 12(2): 505-527

[7]

Han, X. and Li, J., The mean curvature flow along the Kähler-Ricci flow. arXiv: 1105.1200v1

[8]

Huisken G. Asymptotic behavior for singularities of the mean curvature flow. J. Diff. Geom., 1990, 31(1): 285-299

[9]

Ilmanen T. Elliptic regularization and partial regularity for motion by mean curvature. Mem. Amer. Math. Soc., 1994, 520: x+90

[10]

Ilmanen, T., Singularities of mean curvature flow of surfaces, preprint. http://www.math.ethz.ch~ilmanen/paper/pub.html

[11]

Joyce D D. Riemannian Holonomy Groups and Calibrated Geometry, 2007, Oxford: Oxford University Press

[12]

Sun, J. and Yang, L., Generalized Lagrangian mean curvature flow in almost Calabi-Yau manifolds, preprint. arXiv: 1307.7854v1

[13]

Wang M T. Mean curvature flow of surfaces in Einstein four manifolds. J. Diff. Geom., 2001, 57: 301-338

[14]

White B. A local regularity theorem for mean curvature flow. Ann. Math., 2005, 161: 1487-1519

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/