Quasi-sure flows associated with vector fields of low regularity

Siyan Xu , Hua Zhang

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 51 -68.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 51 -68. DOI: 10.1007/s11401-013-0816-6
Article

Quasi-sure flows associated with vector fields of low regularity

Author information +
History +
PDF

Abstract

The authors construct a solution U t(x) associated with a vector field on the Wiener space for all initial values except in a 1-slim set and obtain the 1-quasi-sure flow property where the vector field is a sum of a skew-adjoint operator not necessarily bounded and a nonlinear part with low regularity, namely one-fold differentiability. Besides, the equivalence of capacities under the transformations of the Wiener space induced by the solutions is obtained.

Keywords

Quasi-sure flows / Abstract Wiener space / Low regularity

Cite this article

Download citation ▾
Siyan Xu, Hua Zhang. Quasi-sure flows associated with vector fields of low regularity. Chinese Annals of Mathematics, Series B, 2014, 35(1): 51-68 DOI:10.1007/s11401-013-0816-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosio L, Figalli A. On flows associated to Sobolev vector fields in Wiener space: an approach à la Di Perna-Lions. J. Funct. Anal., 2009, 256(1): 179-214

[2]

Bogachev V I. Gaussian Measures, Mathematical Suverys and Monographs, 1998, Providence, RI: American Mathematical Society 62

[3]

Cruzeiro A B. Équations différentielles sur l’espace de Wiener et formules de Cameron-Martin nonlin éaires. J. Funct. Anal., 1983, 54: 206-227

[4]

Cruzeiro A B. Unicité de solutions d’équations différentielles sur l’espace de Wiener. J. Funct. Anal., 1984, 58: 335-347

[5]

Denis L. Quasi-sure analysis related to sub-Markovian semi-group. Potential Anal., 1997, 6: 289-311

[6]

Gross L. Abstract Wiener spaces. Proc. Fifth Berkeley Sympos. Math. Statist. and Prob., 1965, Berkeley, CA: University of California Press 31-42

[7]

Huang Z Y, Yan J A. Introduction to Infinite Dimensional Stochastic Analysis, Monographs in Pure and Appl. Mathematics, 1997, Beijing: Chinese Academic Press 37

[8]

Kusuoka S. Analysis on Wiener space. I. Nonlinear maps. J. Funct. Anal., 1998, 98: 122-168

[9]

Malliavin P, Nualart D. Quasi-sure analysis and Stratonovich anticipative stochastic differential equations. Probab. Theory Relat. Fields, 1993, 78: 45-55

[10]

Malliavin P. Stochastic Analysis, Grund. Math. Wissen., 1997, Berlin: Springer-Verlag 313

[11]

Peters G. Anticipating flows on the Wiener space generated by vector fields of low regularity. J. Funct. Anal., 1996, 142: 129-192

[12]

Ren J G. Analyse quasi-sûre des équations différentielles stochastiques. Bull. Sci. Math. II. Sér., 1990, 114: 187-213

[13]

Shigekawa I. Sobolev spaces of Banach valued functions associated with a Markov processes. Probab. Theory Relat. Fields, 1994, 99: 425-441

[14]

Yun Y S. The quasi-sure existence of solutions for differential equations on Wiener space. J. Kyoto. Univ., 1994, 34(4): 767-796

[15]

Yun Y S. A quasi-sure flow property and the equivalence of capacities for differential equations on the Wiener space. J. Funct. Anal., 1996, 137: 381-393

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/