Asymptotics for the tail probability of random sums with a heavy-tailed random number and extended negatively dependent summands

Fengyang Cheng , Na Li

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 69 -78.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 69 -78. DOI: 10.1007/s11401-013-0815-7
Article

Asymptotics for the tail probability of random sums with a heavy-tailed random number and extended negatively dependent summands

Author information +
History +
PDF

Abstract

Let {X,X k: k ≥ 1} be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX > 0. Let τ be a nonnegative integer-valued random variable, independent of {X,X k: k ≥ 1}. In this paper, the authors obtain the necessary and sufficient conditions for the random sums S_\tau = \sum\limits_{n = 1}^\tau {X_n } to have a consistently varying tail when the random number τ has a heavier tail than the summands, i.e., \frac{{P(X > x)}}{{P(\tau > x)}} \to 0 as x→∞.

Keywords

Asymptotic behavior / Random sums / Heavy-Tailed distribution

Cite this article

Download citation ▾
Fengyang Cheng, Na Li. Asymptotics for the tail probability of random sums with a heavy-tailed random number and extended negatively dependent summands. Chinese Annals of Mathematics, Series B, 2014, 35(1): 69-78 DOI:10.1007/s11401-013-0815-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aleškevičiené A, Leipus R, Šiaulys J. Tail behavior of random sums under consistent variation with applications to the compound renewal risk model. Extremes, 2008, 11: 261-279

[2]

Bingham N H, Goldie C M, Teugels J L. Regular Variation, 1987, Cambridge: Cambridge University Press

[3]

Chen Y Q, Chen A Y, Ng K W. The strong law of large numbers for extended negatively dependent random variables. J. Appl. Probab., 2010, 47: 908-922

[4]

Cline D B H. Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. Ser. A, 1987, 43: 347-365

[5]

Embrechts P, Goldie C M, Veraverbeke N. Subexponentiality and infinite divisibility. Z. Wahrsch., 1979, 49: 335-347

[6]

Embrechts P, Klüppelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance, 1997, Berlin: Springer-Verlag

[7]

Faÿ G, González-Arévalo B, Mikosch T, Samorodnitsky G. Modelling teletraffic arrivals by a Poisson cluster process. Queueing Syst. Theor. Appl., 2006, 54: 121-140

[8]

Foss S, Korshunov D, Zachary S. Convolutions of long-tailed and subexponential distributions. J. Appl. Probab., 2009, 46: 756-767

[9]

Liu L. Precise large deviations for dependent random variables with heavy tails. Statist. Probab. Lett., 2009, 79: 1290-1298

[10]

Pakes A. Convolution equivalence and infinite divisibility. J. Appl. Probab., 2004, 41: 407-424

[11]

Robert C Y, Segers J. Tails of random sums of a heavy-tailed number of light-tailed terms. Insurance Math. Econom., 2008, 43: 85-92

[12]

Tang Q H. Insensitivity to negative dependence of the asymptotic behavior of precise large deviations. Electron. J. Probab., 2006, 11: 107-120

[13]

Watanabe T. Convolution equivalence and distributions of random sums. Probab. Theory Related Fields, 2008, 142: 367-397

[14]

Yu C J, Wang Y B, Yang Y. The closure of the convolution equivalent distribution class under convolution roots with applications to random sums. Statist. Probab. Lett., 2010, 80: 462-472

[15]

Zhang J, Cheng F Y, Wang Y B. Tail behavior of random sums of negatively associated increments. J. Math. Anal. Appl., 2011, 376: 64-73

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/