\mathcal{T}_C -Gorenstein projective, \mathcal{L}_C -Gorenstein injective and \mathcal{H}_C -Gorenstein flat modules

Zhen Zhang , Xiaosheng Zhu , Xiaoguang Yan

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 115 -124.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 115 -124. DOI: 10.1007/s11401-013-0811-y
Article

\mathcal{T}_C -Gorenstein projective, \mathcal{L}_C -Gorenstein injective and \mathcal{H}_C -Gorenstein flat modules

Author information +
History +
PDF

Abstract

The authors introduce and investigate the \mathcal{T}_C -Gorenstein projective, \mathcal{L}_C -Gorenstein injective and \mathcal{H}_C -Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenstein projective, injective and flat modules, respectively. The authors prove that the classes of all the \mathcal{T}_C -Gorenstein projective or the \mathcal{H}_C -Gorenstein flat modules are exactly those Gorenstein projective or flat modules which are in the Auslander class with respect to C, respectively, and the classes of all the \mathcal{L}_C -Gorenstein injective modules are exactly those Gorenstein injective modules which are in the Bass class, so the authors get the relations between the Gorenstein projective, injective or flat modules and the C-Gorenstein projective, injective or flat modules. Moreover, the authors consider the \mathcal{T}_C (R)-projective and \mathcal{L}_C (R)-injective dimensions and \mathcal{T}_C (R)-precovers and \mathcal{L}_C (R)-preenvelopes. Finally, the authors study the \mathcal{H}_C -Gorenstein flat modules and extend the Foxby equivalences.

Keywords

\mathcal{T}_C -Gorenstein projective module / C-Gorenstein projective module / Semidualizing module / Foxby equivalence / Precover / Preenvelope

Cite this article

Download citation ▾
Zhen Zhang, Xiaosheng Zhu, Xiaoguang Yan. \mathcal{T}_C -Gorenstein projective, \mathcal{L}_C -Gorenstein injective and \mathcal{H}_C -Gorenstein flat modules. Chinese Annals of Mathematics, Series B, 2014, 35(1): 115-124 DOI:10.1007/s11401-013-0811-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Christensen L W. Gorenstein Dimensions, 2000, Berlin: Springer-Verlag

[2]

Enochs E E, Jenda O M G. Relative homological algebra, 2000, Berlin, New York: De Gruyter

[3]

Enochs E E, Jenda O M G, Xu J. Foxby duality and Gorenstein injective and projective modules. Trans. Amer. Math. Soc., 1996, 348(8): 3223-3234

[4]

Foxby H B. Gorenstein modules and related modules. Math. Scand, 1972, 31: 267-284

[5]

Golod E S. G-dimension and generalized perfect ideals, Algebraic geometry and its applications. Trudy Mat. Inst. Steklov, 1984, 165: 62-66

[6]

Holm H. Gorenstein homological dimensions. J. Pure Appl. Algebra, 2004, 189: 167-193

[7]

Holm H, White D. Foxby equivalence over associative rings. J. Math. Kyoto Univ., 2008, 47: 781-808

[8]

Sather-Wagstaff S, Sharif T, White D. Stability of Gorenstein categories. J. London Math. Soc., 2008, 77(2): 481-502

[9]

Sather-Wagstaff S, Sharif T, White D. AB-context and stabiity for Gorenstein flat modules with respect to semidualizing modules. Algebra and Representation Theory, 2010, 54: 430-435

[10]

Sather-Wagstaff S, Sharif T, White D. Tate cohomology with respect to semidualizing modules. J. Algebra, 2010, 324: 2336-2368

[11]

Takahashi R, White D. Homological aspects of semidualizing modules. Math. Scand, 2010, 106(1): 5-22

[12]

Vasconcelos W V. Divisor theory in module categories, 1974, Amsterdam: North-Holland Publishing Co.

[13]

White D. Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra, 2010, 2(1): 111-137

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/