Prescribing curvature problems on the Bakry-Emery Ricci tensor of a compact manifold with boundary

Weimin Sheng , Lixia Yuan

Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 139 -160.

PDF
Chinese Annals of Mathematics, Series B ›› 2014, Vol. 35 ›› Issue (1) : 139 -160. DOI: 10.1007/s11401-013-0809-5
Article

Prescribing curvature problems on the Bakry-Emery Ricci tensor of a compact manifold with boundary

Author information +
History +
PDF

Abstract

The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function. A consequence of our main result is that there exists a complete metric such that the Monge-Ampère type equation with respect to its Bakry-Emery Ricci tensor is solvable, provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.

Keywords

k-Curvature / Bakry-Emery Ricci tensor / Complete metric / Dirichlet problem

Cite this article

Download citation ▾
Weimin Sheng, Lixia Yuan. Prescribing curvature problems on the Bakry-Emery Ricci tensor of a compact manifold with boundary. Chinese Annals of Mathematics, Series B, 2014, 35(1): 139-160 DOI:10.1007/s11401-013-0809-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakry D, Émery M. Diffusions Hypercontractives in Séminaire de Probabilités XIX, 1983/84, 1985, Berlin: Springer-Verlag 177-20

[2]

Bakry D, Qian Z. Volume comparison theorems without Jacobi field in current trends in potential theory. Theta Ser. Adv. Math., 2005, 4: 115-122

[3]

Caffarelli L A, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of eigenvalues of the Hessians. Acta Mathematica, 1985, 155: 261-301

[4]

Guan B. Complete conformal metrics of negative Ricci curvature on compact manifolds with boundary. Int. Math. Res. Not., 2008 1-25

[5]

Gursky M, Streets J, Warren M. Existence of complete conformal metrics of negative Ricci curvature on manifolds with boundary. Calc. Var. Partial Diff. Equ., 2011, 41(1–2): 21-43

[6]

Gursky M, Viaclovsky J. Fully nonlinear equations on Riemannian manifolds with negative curvature. Indiana Univ. Math. J., 2003, 52: 399-419

[7]

He Y, Sheng W M. Prescribing the symmetric function of the eigenvalues of the Schouten tensor. Proc. Amer. Math. Soc., 2011, 139(3): 1127-1136

[8]

Ledoux M. The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math., 2000, 9(6): 305-366

[9]

Li J, Sheng W M. Deforming metrics with negative curvature by a fully nonlinear flow. Calc. Var. Partial Diff. Equ., 2005, 23: 33-50

[10]

Li Q R, Sheng W M. Some Dirichlet problems arising from conformal geometry. Pacific J. Math., 2011, 251(2): 337-359

[11]

Lohkamp J. Metrics of negative Ricci curvature. Ann. Math., 1994, 140: 655-683

[12]

Lott J. Some geometric properties of the Barkry-Émery-Ricci tensor. Comment. Math. Helv., 2003, 78(4): 865-883

[13]

Lott J, Villani C. Ricci curvature for metrici-measure spaces via optimal transport. Ann. Math., 2009, 169: 903-991

[14]

Perelman G. The entropy formula for the Ricci flow and its geometric applications, 2002

[15]

Sheng W M, Trudinger N S, Wang X J. The Yamabe problem for higher order curvatures. J. Diff. Geom., 2007, 77: 515-553

[16]

Sturm K T. On the geometry of metric measure spaces, I, II. Acta Math., 2006, 196(1): 65-177

[17]

Su Y H, Zhang H C. Rigidity of manifolds with Bakry-Emery Ricci curvature bounded below. Geom. Dedicata, 2012, 160: 321-331

[18]

Trudinger N S, Wang X J. The intermediate case of the Yamabe problem for higher order curvatures. Int. Math. Res. Not., 2010, 2010(13): 2437-2458

[19]

Urbas J. An expansion of convex hypersurfaces. J. Diff. Geom., 1991, 33: 91-125

[20]

Wei G, Wylie W. Comparison geometry for the Bakry-Émery-Ricci tensor. J. Diff. Geom., 2009, 83(2): 337-405

[21]

Yuan, L. X., Prescribing curvature problem of Bakry-Emery Ricci tensor, Sci. China Math., DOI: 10.1007/s11425-013-4595-z.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/