Simultaneous identification of two parameters on the reaction diffusion system from discrete measurement data

Soundararajan Gnanavel , Krishnan Balachandran

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 843 -854.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 843 -854. DOI: 10.1007/s11401-013-0807-7
Article

Simultaneous identification of two parameters on the reaction diffusion system from discrete measurement data

Author information +
History +
PDF

Abstract

This article deals with an inverse problem of reconstructing two time independent coefficients in the reaction diffusion system from the final time space discretized measurement using the optimization method with the help of the smooth interpolation technique. The main objective of the article is to analyse the asymptotic behavior of the solution of the inverse problem for the linearly coupled reaction diffusion system with respect to the homogeneous Dirichlet boundary condition.

Keywords

Inverse problem / Optimal control / Reaction diffusion systems / Asymptotic convergence

Cite this article

Download citation ▾
Soundararajan Gnanavel, Krishnan Balachandran. Simultaneous identification of two parameters on the reaction diffusion system from discrete measurement data. Chinese Annals of Mathematics, Series B, 2013, 34(6): 843-854 DOI:10.1007/s11401-013-0807-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Q, Liu J. Solving an inverse parabolic problem by optimization from final measurement data. J. Comput. Appl. Math., 2006, 193: 183-203

[2]

Deng Z C, Yu J N, Yang L. Optimization method for an evolutional type inverse heat conduction problem. J. Phys. A, 2008, 41: 035201

[3]

Deng Z C, Yu J N, Yang L. Identifying the coefficient of first-order in parabolic equation from final measurement data. Math. Comput. Simulation, 2008, 77: 421-435

[4]

Deng Z C, Yu J N, Yang L. An inverse problem of determining the implied volatility in option pricing. J. Math. Anal. Appl., 2008, 340: 16-31

[5]

Deng Z C, Yang L, Yu J N. Identifying the radiative coefficient of heat conduction equations from discrete measurement data. Appl. Math. Lett., 2009, 22: 495-500

[6]

Deng Z C, Yang L, Yu J N, Luo G W. An inverse problem of identifying the coefficient in a nonlinear parabolic equation. Nonlinear Anal., 2009, 71: 6212-6221

[7]

Friedman A. Partial Differential Equations of Parabolic Type, 1964, New Jersey: Prentice-Hall

[8]

Friedmann A, Reitich F. Parameter identification in reaction-diffusion model. Inverse Problems, 1992, 8: 187-192

[9]

Hasanov A. Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach. J. Math. Anal. Appl., 2007, 330: 766-779

[10]

Hoffman K H, Jiang L. Optimal control of a phase field model for solidification. Numer. Funct. Anal. Optim., 1992, 13: 11-27

[11]

Isakov V. Inverse parabolic problems with the final overdetermination. Comm. Pure Appl. Math., 1991, 44(2): 185-209

[12]

Jiang L S, Tao Y S. Identifying the volatility of underlying assets from option prices. Inverse Problems, 2001, 17: 137-155

[13]

Ladyzenskaya O, Solonnikov V, UralCeva N. Linear and quasilinear equations of parabolic type, 1968, Providence: AMS

[14]

Rothe F. Global solutions of reaction-diffusion systems. vol. 1072 of Lecture Notes in Mathematics, 1984, Berlin: Springer-Verlag

[15]

Sakthivel K, Gnanavel S, Barani Balan N, Balachandran K. Inverse problem for the reaction diffusion system by optimization method. Appl. Math. Model., 2011, 35: 571-579

[16]

Stoer J, Bulirsch R. Introduction to Numerical Analysis, 1980, New York: Springer-Verlag

[17]

Wu Z, Yin J, Wang C. Elliptic and Parabolic Equations, 2006, London: World Scientific

[18]

Yang L, Yu J N, Deng Z C. An inverse problem of identifying the coefficient of parabolic equation. Appl. Math. Model., 2008, 32: 1984-1995

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/