Carleson-type maximal operators with variable kernels

Honghai Liu

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 855 -860.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 855 -860. DOI: 10.1007/s11401-013-0806-8
Article

Carleson-type maximal operators with variable kernels

Author information +
History +
PDF

Abstract

The author considers the L p boundedness for two kinds of Carleson-type maximal operators with variable kernels $\frac{{\Omega \left( {x,y'} \right)}}{{\left| y \right|^n }}$, where Ω(x, y′) ∈ L (ℝ nW 2 s (S n−1) for some s > 0.

Keywords

Carleson operators / Spherical harmonics / Sobolev spaces on sphere / Markov inequality

Cite this article

Download citation ▾
Honghai Liu. Carleson-type maximal operators with variable kernels. Chinese Annals of Mathematics, Series B, 2013, 34(6): 855-860 DOI:10.1007/s11401-013-0806-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bos L, Levenberg N, Milman P, Taylor B A. Tangential Markov inequalities characterize algebraic submanifolds of ℝN. Indiana Univ. Math. J., 1995, 44(1): 115-138

[2]

Calderón A P. Integralses singulares y sus aplicaciones a ecuaciones diferenciales hyperbolicas. Cursos y Seminarios de Matematicas, 3, 1960, Buenos Aires: Univ. de Buenos Aires

[3]

Calderón A P, Zygmund A. On a problem of Mihlin. Trans. Amer. Math. Soc., 1955, 78(1): 209-224

[4]

Calderón A P, Zygmund A. On singular integrals. Amer. J. Math., 1956, 78(2): 289-309

[5]

Calderón A P, Zygmund A. On singular integrals with variable kernels. Applicable Anal., 1978, 7(3): 221-238

[6]

Carleson L. On convergence and growth of partial sums of Fourier series. Acta. Math., 1966, 116(1): 135-157

[7]

Chiarenza F, Frasca M, Longo P. Interior W 2,p estimates for nondivergence elliptic equation with discontinuous coefficients. Ricerche Math., 1991, 40: 105-167

[8]

Colzani L. Hardy spaces on spheres, 1982, St, Louis: Washington University

[9]

Ding Y, Liu H. Weighted L p boundedness of Carleson-type maximal operators. Proc. Amer. Math. Soc., 2012, 140(8): 2739-2751

[10]

Ding Y, Liu H. L p boundedness of Carleson-type maximal operators with nonsmooth kernels. Tohoku Math. J., 2011, 63(2): 255-267

[11]

Fefferman C. Inequalities for strongly singular convolution operators. Acta. Math., 1970, 124(1): 9-36

[12]

Hunt R A. On the convergence of Fourier series, orthogonal expansions and their continuous analogues. Proceedings of the Conference held at Southern Illinois University, Edwardswille, SIU Press, Carbondate, IL, 1967

[13]

Jetter K, Stöckler J, Ward J D. Error estimates for scattered data interpolation on spheres. Math. Comp., 1999, 68(226): 743-747

[14]

Jiang, J., Wang, C. and Yu, X., Generalized and weighted strichartz estimates, arXiv:1008.5397.

[15]

Lions J L, Magenes E. Non-Homogeneous Boundary Value Problems and Applications, vol. I, 1972, New York: Springer-Verlag

[16]

Müller C. Spherical Harmonics, 1966, Berlin, Heidelberg: Springer-Verlag

[17]

Sjölin P. Convergence almost everywhere of certain singular integral and multiple Fourier series. Ark. Mat., 1971, 9(1): 65-90

[18]

Stein E M, Wainger S. Oscillatory integrals related to Carleson’s theorem. Math. Res. Lett., 2001, 8: 789-800

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/