New lower bounds for the least common multiples of arithmetic progressions

Rongjun Wu , Qianrong Tan , Shaofang Hong

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 861 -864.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 861 -864. DOI: 10.1007/s11401-013-0805-9
Article

New lower bounds for the least common multiples of arithmetic progressions

Author information +
History +
PDF

Abstract

For relatively prime positive integers u 0 and r, and for 0 ≤ kn, define u k:= u 0 + kr. Let L n:= lcm(u 0, u 1, ..., u n) and let a, l ≥ 2 be any integers. In this paper, the authors show that, for integers αa, r ≥ max(a,l − 1) and nlαr, the following inequality holds $L_n \geqslant u_0 r^{\left( {l - 1} \right)\alpha + a - l} \left( {r + 1} \right)^n .$ Particularly, letting l = 3 yields an improvement on the best previous lower bound on L n obtained by Hong and Kominers in 2010.

Keywords

Arithmetic progression / Least common multiple / Lower bound

Cite this article

Download citation ▾
Rongjun Wu, Qianrong Tan, Shaofang Hong. New lower bounds for the least common multiples of arithmetic progressions. Chinese Annals of Mathematics, Series B, 2013, 34(6): 861-864 DOI:10.1007/s11401-013-0805-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bateman P, Kalb J, Stenger A. A limit involving least common multiples. Amer. Math. Monthly, 2002, 109: 393-394

[2]

Farhi B. Minoration non triviales du plus petit commun multiple de certaines suites finies d’entiers. C. R. Acad. Sci. Paris, Ser. I, 2005, 341: 469-474

[3]

Farhi B. Nontrivial lower bounds for the least common multiple of some finite sequences of integers. J. Number Theory, 2007, 125: 393-411

[4]

Farhi B. An identity involving the least common multiple of binomial coefficients and its application. Amer. Math. Monthly, 2009, 116: 836-839

[5]

Farhi B, Kane D. New results on the least common multiple of consecutive integers. Proc. Amer. Math. Soc., 2009, 137: 1933-1939

[6]

Hanson D. On the product of the primes. Canad. Math. Bull., 1972, 15: 33-37

[7]

Hong S, Feng W. Lower bounds for the least common multiple of finite arithmetic progressions. C. R. Acad. Sci. Paris, Ser. I, 2006, 343: 695-698

[8]

Hong S, Kominers S D. Further improvements of lower bounds for the least common multiples of arithmetic progressions. Proc. Amer. Math. Soc., 2010, 138: 809-813

[9]

Hong S, Qian G. The least common multiple of consecutive arithmetic progression terms. Proc. Edinburgh Math. Soc., 2011, 54: 431-441

[10]

Hong S, Qian G, Tan Q. The least common multiple of a sequence of products of linear polynomials. Acta Math. Hungar., 2012, 135: 160-167

[11]

Hong S, Yang Y. Improvements of lower bounds for the least common multiple of finite arithmetic progressions. Proc. Amer. Math. Soc., 2008, 136: 4111-4114

[12]

Hong S, Yang Y. On the periodicity of an arithmetical function. C. R. Acad. Sci. Paris, Ser. I, 2008, 346: 717-721

[13]

Nair M. On Chebyshev-type inequalities for primes. Amer. Math. Monthly, 1982, 89: 126-129

[14]

Qian G, Tan Q, Hong S. The least common multiple of consecutive terms in a quadratic progression. Bull. Aust. Math. Soc., 2012, 86: 389-404

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/