Notes on homoclinic solutions of the steady Swift-Hohenberg equation

Shengfu Deng , Boling Guo , Xiaopei Li

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 917 -920.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 917 -920. DOI: 10.1007/s11401-013-0801-0
Article

Notes on homoclinic solutions of the steady Swift-Hohenberg equation

Author information +
History +
PDF

Abstract

This paper considers the steady Swift-Hohenberg equation $u'''' + \beta ^2 u'' + u^3 - u = 0.$ Using the dynamic approach, the authors prove that it has a homoclinic solution for each $\beta \in \left[ {\sqrt[4]{8} - \varepsilon _0 ,\sqrt[4]{8}} \right)$, where ε 0 is a small positive constant. This slightly complements Santra and Wei’s result [Santra, S. and Wei, J., Homoclinic solutions for fourth order traveling wave equations, SIAM J. Math. Anal., 41, 2009, 2038–2056], which stated that it admits a homoclinic solution for each β ∈ (0, β 0) where β 0 = 0.9342 ....

Keywords

Homoclinic solutions / Normal form / Reversibility

Cite this article

Download citation ▾
Shengfu Deng, Boling Guo, Xiaopei Li. Notes on homoclinic solutions of the steady Swift-Hohenberg equation. Chinese Annals of Mathematics, Series B, 2013, 34(6): 917-920 DOI:10.1007/s11401-013-0801-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonheure D. Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2004, 21: 319-340

[2]

Cross M C, Hohenberg P C. Pattern formation outside of equilibrium. Rev. Mod. Phys., 1993, 65: 851-1112

[3]

Iooss G, Adelmeyer M. Topics in bifurcation theory and applications, 1992, Singapore: World Scientific

[4]

Hsieh D Y. Elemental mechanisms of hydrodynamic instabilities. Acta Mech. Sinica, 1994, 10: 193-202

[5]

Hsieh D Y, Tang S Q, Wang X P. On hydrodynamic instabilities, chaos and phase transition. Acta Mech. Sinica, 1996, 12: 1-14

[6]

Iooss G, Pérouème M C. Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. J. Diff. Equs., 1993, 102: 62-88

[7]

Mielke A, Schneider G. Attractors for modulation equations on unbounded domains-existence and comparison. Nonlinearity, 1995, 8: 734-768

[8]

Peletier L A, Rottschäfer V. Pattern selection of solutions of the Swift-Hohenberg equation. Phys. D, 2004, 194: 95-126

[9]

Santra S, Wei J. Homoclinic solutions for fourth order traveling wave equations. SIAM J. Math. Anal., 2009, 41: 2038-2056

[10]

Smets D, Van den Berg J B. Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations. J. Diff. Equs., 2002, 184: 78-96

[11]

Swift J, Hohenberg P C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A, 1977, 15: 319-328

[12]

Van den Berg J B, Peletier L A, Troy W C. Global branches of multi-bump periodic solutions of the Swift-Hohenberg equation. Arch. Rational Mech. Anal., 2001, 158: 91-153

[13]

Yari M. Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations. Discrete Contin. Dyn. Syst. Ser. B, 2007, 7: 441-456

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/