Chen’s conjecture and its generalization

Xuegong Sun , Lixia Dai

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 957 -962.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (6) : 957 -962. DOI: 10.1007/s11401-013-0798-4
Article

Chen’s conjecture and its generalization

Author information +
History +
PDF

Abstract

Let l 1, l 2, ..., l g be even integers and x be a sufficiently large number. In this paper, the authors prove that the number of positive odd integers kx such that (k + l 1)2, (k + l 2)2, ..., (k + l g)2 can not be expressed as 2 n + p α is at least c(g)x, where p is an odd prime and the constant c(g) depends only on g.

Keywords

Chen’s conjecture / Powers of 2 / Primes / Selberg’s sieve method

Cite this article

Download citation ▾
Xuegong Sun, Lixia Dai. Chen’s conjecture and its generalization. Chinese Annals of Mathematics, Series B, 2013, 34(6): 957-962 DOI:10.1007/s11401-013-0798-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Y G. On integers of the forms k r − 2n and k r2n + 1. J. Number Theory, 2003, 98: 310-319

[2]

Chen Y G. Eight consecutive positive odd numbers none of which can be expressed as a sum of two prime powers. Bull. Aust. Math. Soc., 2009, 80(2): 237-243

[3]

Cohen F, Selfridge J L. Not every number is the sum or difference of two prime powers. Math. Comp., 1975, 29: 79-81

[4]

Crocker R. On the sum of a prime and two powers of two. Pacific J. Math., 1971, 36: 103-107

[5]

Darmon H, Granville A. On the equations Z m = F(x, y) and Ax p + By q = Cz r. Bull. London Math. Soc., 1995, 27: 513-544

[6]

Davenport H. Multiplicative Number Theory, 2000 3rd ed New York: Springer-Verlag

[7]

Erdős P. On integers of the form 2r + p and some related problems. Summa Brasil. Math., 1950, 2: 113-123

[8]

Filaseta M, Finch C, Kozek M. On powers associated with Sierpiński numbers, Riesel numbers and Polignac’s conjecture. J. Number Theory, 2008, 128: 1916-1940

[9]

Ford K, Luca F, Shparlinski I E. On the largest prime factor of the Mersenne numbers. Bull. Austr. Math. Soc., 2009, 79: 455-463

[10]

Halberstam H, Richert H E. Sieve Methods, 1974, London: Academic Press Inc.

[11]

Pan H. On the integers not of the form p + 2α + 2β. Acta Arith., 2011, 148(1): 55-61

[12]

de Polignac A. Recherches nouvelles sur les nombres premiers. C. R. Acad. Sci. Paris Math., 1849, 29: 397-401

[13]

Romanoff N P. Über einige Sätze der additiven Zahlentheorie. Math. Ann., 1934, 109: 668-678

[14]

Sun X G. On the density of integers of the form 2k + p in arithmetic progressions. Acta Math. Sinica, 2010, 26: 155-160

[15]

Tao T. A remark on primality testing and decimal expansion. J. Austr. Math. Soc., 2011, 3: 405-413

[16]

van der Corput J G. On de Polignac’s conjecture. Simon Stevin, 1950, 27: 99-105

[17]

Wu K J, Sun Z W. Covers of the integers with odd moduli and their applicitions to the forms x m − 2n and x 2F 3n/2. Math. Comp., 2009, 78: 1853-1866

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/