Operator equations and duality mappings in Sobolev spaces with variable exponents

Philippe G. Ciarlet , George Dinca , Pavel Matei

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 639 -666.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 639 -666. DOI: 10.1007/s11401-013-0797-5
Article

Operator equations and duality mappings in Sobolev spaces with variable exponents

Author information +
History +
PDF

Abstract

After studying in a previous work the smoothness of the space U_{\Gamma _0 } = \{ u \in W^{1,p( \cdot )} (\Omega );u = 0on\Gamma _0 \subset \Gamma = \partial \Omega \} , where dΓ − measΓ0 > 0, with p(·) ∈ \mathcal{C}(\bar \Omega ) and p(x) > 1 for all x ∈ \bar \Omega , the authors study in this paper the strict and uniform convexity as well as some special properties of duality mappings defined on the same space. The results obtained in this direction are used for proving existence results for operator equations having the form J φ u = N, where J φ is a duality mapping on U_{\Gamma _0 } corresponding to the gauge function φ, and N f is the Nemytskij operator generated by a Carathéodory function f satisfying an appropriate growth condition ensuring that N f may be viewed as acting from U_{\Gamma _0 } into its dual.

Keywords

Monotone operators / Smoothness / Strict convexity / Uniform convexity / Duality mappings / Sobolev spaces with a variable exponent / Nemytskij operators

Cite this article

Download citation ▾
Philippe G. Ciarlet, George Dinca, Pavel Matei. Operator equations and duality mappings in Sobolev spaces with variable exponents. Chinese Annals of Mathematics, Series B, 2013, 34(5): 639-666 DOI:10.1007/s11401-013-0797-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R A. Sobolev Spaces, 1975, New York, San Francisco, London: Academic Press

[2]

Browder F E. Problèmes Non-Linéaires, 1964, Montréal: Presses de l’Université de Montréal

[3]

Browder, F. E., Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Proc. Symposia in Pure Math., Vol. 18, A. M. S., Providence, RI.

[4]

Cekic, B. and Mashiyev, R. A., Existence and localization results for p(x)-Laplacian via topological methods, Fixed Point Theory and Appl., 2010, 120646.

[5]

Ciarlet P G, Dinca G, Matei P. Fréchet differentiability of the norm on a Sobolev space with a variable exponent. Anal. Appl., 2013, 11: 13500127

[6]

Cioranescu I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and its Applications, 1990, Dordrecht: Kluwer Academic Publishers

[7]

Day M M. Normed Linear Spaces, 1973, New York, Heidelberg, Berlin: Springer-Verlag

[8]

Diening L. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p(·) and W k,p(·). Math. Nachr., 2004, 268: 31-43

[9]

Diestel J. Geometry of Banach Spaces—Selected Topics, 1975, New York: Springer-Verlag

[10]

Dinca G. Some existence results for operator equations involving duality mappings on Sobolev spaces with variable exponent. Diff. Inte. Eq., 2009, 22(9–10): 1019-1032

[11]

Dinca G, Jebelean P. Some existence results for a class of nonlinear equations involving a duality mapping. Nonlinear Anal., 2001, 46: 347-363

[12]

Dinca G, Jebelean P, Mawhin J. Variational and topological methods for Dirichlet problems with p-Laplacian. Portugaliae Math., 2001, 58(3): 339-377

[13]

Dinca G, Rochdi M. On the structure of the solution set for a class of nonlinear equations involving a duality mapping. Topological Methods in Nonlinear Anal., 2008, 31: 29-47

[14]

Fan X L, Zhao D. On the spaces L p(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. Appl., 2001, 263: 424-446

[15]

Fan X L, Zhang Q. Existence of solutions for p(x)-Laplacian Dirichlet problems. Nonlinear Anal., 2003, 52: 1843-1852

[16]

Figueiredo D G. Lectures on Ekeland Variational Principle with Applications and Detours, 1989, Berlin: Tata Inst. of Fundamental Research, Springer-Verlag

[17]

Glowinski R, Marroco A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. R. A. I. R. O., 1975, 9(2): 41-76

[18]

Huff R. Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math., 1980, 10(4): 743-749

[19]

Kadeč M I. Some conditions for the differentiability of the norm in Banach spaces (in Russian). Uspehi Mat. Nauk, 1965, XX(3): 183-187

[20]

Kováčik O, Rákosník J. On spaces L p(x) and W k,p(x). Czechoslovak Math. J., 1991, 41(4): 592-618

[21]

Nečas J. Les Méthodes Directes en Théorie des Equations Elliptiques, 1967

[22]

Petryshyn W V. A characterization of strict convexity of Banach spaces and other uses of duality mappings. J. Funct. Anal., 1970, 6(2): 282-292

[23]

Phelps R R. Convex Functions, Monotone Operators and Differentiability, 1989 2nd Edition New York: Springer-Verlag

[24]

Smart D R. Fixed Points Theorems, 1974, Cambridge: Cambridge University Press

[25]

Vajnberg M M. Variational Method and Method of Monotone Operators (in Russian), 1972, Moscow: Izd. Nauka

[26]

Zeidler E. Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators, 1990, New York: Springer-Verlag

[27]

Zhao D, Fan X L. On the Nemytsky operators from L^{p_1 (x)} (Ω) to L^{p_2 (x)} (Ω). J. Lanzhou Univ. (Natural Sciences), 1998, 34(1): 1-5

[28]

Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv., 1987, 29: 33-66

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/