A variational finite element model for large-eddy simulations of turbulent flows

Tomás Chacón Rebollo , Roger Lewandowski

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 667 -682.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 667 -682. DOI: 10.1007/s11401-013-0796-6
Article

A variational finite element model for large-eddy simulations of turbulent flows

Author information +
History +
PDF

Abstract

The authors introduce a new Large Eddy Simulation model in a channel, based on the projection on finite element spaces as filtering operation in its variational form, for a given triangulation {T h} h>0. The eddy viscosity is expressed in terms of the friction velocity in the boundary layer due to the wall, and is of a standard sub grid-model form outside the boundary layer. The mixing length scale is locally equal to the grid size. The computational domain is the channel without the linear sub-layer of the boundary layer. The no-slip boundary condition (or BC for short) is replaced by a Navier (BC) at the computational wall. Considering the steady state case, the authors show that the variational finite element model they have introduced, has a solution (v h, p h) h>0 that converges to a solution of the steady state Navier-Stokes equation with Navier BC.

Keywords

Navier-Stokes equations / Turbulence modeling / Finite elements

Cite this article

Download citation ▾
Tomás Chacón Rebollo, Roger Lewandowski. A variational finite element model for large-eddy simulations of turbulent flows. Chinese Annals of Mathematics, Series B, 2013, 34(5): 667-682 DOI:10.1007/s11401-013-0796-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beirão Da Veiga H. On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions. Comm. Pure Appl. Math., 2005, 58: 552-577

[2]

Beirão Da Veiga H. Vorticity and regularity for flows under the Navier boundary condition. Commun. Pure Appl. Anal., 2006, 5: 907-918

[3]

Berselli L C. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: existence and uniqueness of various classes of solutions in the flat boundary case. Discrete Contin. Dyn. Syst. Ser. S, 2010, 3(2): 199-219

[4]

Bernardi C, Maday Y, Rapetti F. Discrétisations variationnelles de problèmes aux limites elliptiques, 2004, Berlin: Springer-Verlag

[5]

Bernardi C, Raugel G. Analysis of some finite elements for the Stokes problem. Math. Comp., 1985, 44(169): 71-79

[6]

Berselli L, Lewandowski R. Convergence of approximate deconvolution models to the mean Navier-Stokes Equations, Annales de l’Institut Henri Poincare (C). Nonlinear Analysis, 2012, 29: 171-198

[7]

Berselli L C, Iliescu T, Layton W J. Mathematics of Large Eddy Simulation of Turbulent Flows, 2006, Berlin: Springer-Verlag

[8]

Brézis H. Analyse Fonctionelle: Théorie et Applications, 1983, Paris: Masson

[9]

Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods, 1991, New York: Springer-Verlag

[10]

Bulíček M, Málek J, Rajagopal K R. Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J., 2007, 56(1): 51-85

[11]

Chacón Rebollo T, Lewandowski R. Mathematical and numerical foundations of turbulence models and applications, 2013

[12]

Ciarlet P. The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, Vol. 40, 2002, Philadelphia: SIAM

[13]

Clément P. Approximation by finite element functions using local regularization. RAIRO Anal. Numér., 1975, 9(R-2): 77-84

[14]

Germano M. Differential filters for the large eddy numerical simulation of turbulent flows. Phys. Fluids, 1986, 29(6): 1755-1757

[15]

Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, 1986, New York: Springer-Verlag

[16]

Foias C, Holm D D, Titi E S. The Navier-Stokes-alpha model of fluid turbulence. Physica D, 2001, 152: 505-519

[17]

Hughes T J R, Feijóo G, Mazzei L, Qunicy J B. The variational multiscale methoda paradigm for computational mechanics. Comp. Meth. Appl. Mech. Enrgrg., 1998, 166(1–2): 3-24

[18]

Hughes T J R, Mazzei L, Jansen K E. Large eddy simulation and the variational multiscale method. Comput. Vis. Sci., 2000, 3: 47-59

[19]

Hughes T J R, Mazzei L, Oberai A, Wray A. The multiscale formulation of large eddy simulation. Phys. Fluids, 2001, 13(2): 505-512

[20]

Hughes T J R, Oberai A, Mazzei L. Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids, 2001, 13(6): 1784-1799

[21]

Von Kármán, T, Mechanische Ähnlichkeit und Turbulenz, Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse, 58, 1930.

[22]

Kolmogorov A N. The local structure of turbulence in incompressible viscous fluids for very large Reynolds number. Dokl. Akad. Nauk SSR, 1941, 30: 9-13

[23]

Layton W, Lewandowski R. Analysis of an eddy viscosity model for large eddy simulation of turbulent flows. J. Math. Fluid Dynam., 2002, 4: 374-399

[24]

Layton W, Lewandowski R. A simple and stable scale similarity model for large eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett., 2003, 16: 1205-1209

[25]

Lesieur M, Métais O, Comte P. Large-eddy Simulations of Turbulence, 2005, Cambridge: Cambridge University Press

[26]

Lewandowski R. Analyse Mathématique et Océanographie, 1997, Paris: Masson

[27]

Mohammadi M, Pironneau O. Analysis of the k-Epsilon Turbulence Model, 1994, Paris: Masson

[28]

Parés C. Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal., 1992, 43: 245-296

[29]

Piomelli U, Balaras E. Wall-layer models for large-eddy simulations. Annu. Fluid Mech., 2002, 34: 349-374

[30]

Pope S B. Turbulent Flows, 2000, Cambridge: Cambridge University Press

[31]

Rodi W, Ferziger J H, Breuer M, Pourquié M. Status of large-eddy simulation. Workshop on LES of flows past bluff bodies (Rottach-Egern, Tegernsee, 1995). ASME J. Fluid Engng., 1997, 119: 248-262

[32]

Sagaut P. Large Eddy Simulation for Incompressible Flows, 2002, Belin: Springer-Verlag

[33]

Scott R, Zhang S. Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput., 1990, 54: 483-493

[34]

Schlichting H. Boundary Layer Theory, 2000 8th Edition New York: Springer-Verlag

[35]

Spalding D B. A single formula for the law of the wall. J. Appl. Mech., 1961, 28: 455-458

[36]

Temam R, Navier-Stokes Equations A M S. Chelsea, 2001

[37]

Verfürth R. Finite element approximation of incompressible Navier-Stokes equations with slip boundary conditions. Numer. Math., 1987, 50: 697-721

AI Summary AI Mindmap
PDF

380

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/