On the Diophantine equation x 2kxy + y 2 + lx = 0

Yongzhong Hu , Maohua Le

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 715 -718.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 715 -718. DOI: 10.1007/s11401-013-0792-x
Article

On the Diophantine equation x 2kxy + y 2 + lx = 0

Author information +
History +
PDF

Abstract

Let l be a given nonzero integer. The authors give an explicit characterization of the positive integer k that makes the Diophantine equation x 2kxy + y 2 +lx = 0 have infinitely many positive integer solutions (x, y).

Keywords

Quadratic Diophantine equation / Solvability / Counting solutions

Cite this article

Download citation ▾
Yongzhong Hu, Maohua Le. On the Diophantine equation x 2kxy + y 2 + lx = 0. Chinese Annals of Mathematics, Series B, 2013, 34(5): 715-718 DOI:10.1007/s11401-013-0792-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hua L K. Introduction to Number Theory, 1982, Berlin: Springer-Verlag

[2]

Keskin R. Solutions of some quadratic Diophantine equations. Comput. Math. Appl., 2010, 60(8): 2225-2230

[3]

Marlewski A, Zarzycki P. Infinitely many positive solutions of the Diophantine equation x 2kxy + y 2 + x = 0. Comput. Math. Appl., 2004, 47(1): 115-121

[4]

Perron O. Die Lehre von den Kettenbrüchen, 1929, Leipzig: Teubner.

[5]

Yuan P Z, Hu Y Z. On the Diophantine equation x 2kxy + y 2 + lx = 0, l ∈ {1, 2, 4}. Comput. Math. Appl., 2011, 61(3): 573-577

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/