Stochastic H 2/H control with random coefficients

Meijiao Wang

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 733 -752.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 733 -752. DOI: 10.1007/s11401-013-0790-z
Article

Stochastic H 2/H control with random coefficients

Author information +
History +
PDF

Abstract

This paper is concerned with the mixed H 2/H control for stochastic systems with random coefficients, which is actually a control combining the H 2 optimization with the H robust performance as the name of H 2/H reveals. Based on the classical theory of linear-quadratic (LQ, for short) optimal control, the sufficient and necessary conditions for the existence and uniqueness of the solution to the indefinite backward stochastic Riccati equation (BSRE, for short) associated with H robustness are derived. Then the sufficient and necessary conditions for the existence of the H 2/H control are given utilizing a pair of coupled stochastic Riccati equations.

Keywords

Stochastic H control / Stochastic H 2/H control / Linear quadratic (LQ) optimal control / Indefinite backward stochastic Riccati equation

Cite this article

Download citation ▾
Meijiao Wang. Stochastic H 2/H control with random coefficients. Chinese Annals of Mathematics, Series B, 2013, 34(5): 733-752 DOI:10.1007/s11401-013-0790-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Basar T, Bernhar P. H -Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, 1995, Boston: Birkhäuser

[2]

Chen S, Yong J. Stochastic linear quadratic optimal control problems with random coefficients. Chin. Ann. Math. Ser. B, 2000, 21(3): 323-338

[3]

Chen B, Zhang W. Stochastic H 2/H control with state-dependent noise. IEEE Trans. Automat. Control, 2004, 49: 45-57

[4]

Costa O L V, Marques R P. Mixed H 2/H control of discrete-time Markovian jump linear systems. IEEE Trans. Automat. Control, 1998, 43: 95-100

[5]

Chen X, Zhou K. Multiobjective H 2/H control design. SIAM J. Control Optim., 2001, 40: 628-660

[6]

Hinrichsen D, Pritchard A J. Stochastic H . SIAM J. Control Optim., 1998, 36: 1504-1538

[7]

Hu Y, Zhou X. Indefinite stochastic Riccati equations. SIAM J. Control Optim., 2003, 42: 123-137

[8]

Khargonekar P P, Rotea M A. Mixed H 2/H control: A convex optimization approach. IEEE Trans. Automat. Control, 1991, 36: 824-837

[9]

Kohlmann M, Tang S. Optimal control of linear stochastic systems with singular costs, and the mean variance hedging problem with stochastic market conditions, 2000

[10]

Kohlmann M, Tang S. Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging. Stochastic Process. Appl., 2002, 97: 255-288

[11]

Kohlmann M, Tang S. Multidimensional backward stochastic Riccati equations and applications. SIAM J. Control Optim., 2003, 41: 1696-1721

[12]

Kohlmann M, Tang S. Minimization of risk and linear quadratic optimal control theory. SIAM J. Control Optim., 2003, 42: 1118-1142

[13]

Limebeer D J N, Anderson B D O, Hendel B. A Nash game approach to mixed H 2/H control. IEEE Trans. Automat. Control, 1994, 39: 69-82

[14]

Lim A E B, Zhou X. Mean-variance portfolio selection with random parameters in a complete market. Math. Oper. Res., 2001, 27: 101-120

[15]

Lim A E B. Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market. Math. Oper. Res., 2004, 29: 132-161

[16]

Peng S. Stochastic Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim., 1992, 30: 284-304

[17]

Sweriduk G D, Calise A J. Differential game approach to the mixed H 2/H problem. Journal of Guidance Control, and Dynamics, 1997, 20: 1229-1234

[18]

Tang S. General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim., 2003, 42: 53-75

[19]

Zhang W, Chen B. State feedback H control for a class of nonlinear stochastic systems. SIAM J. Control Optim., 2006, 44: 1973-1991

[20]

Zhang W, Zhang H, Chen B. Stochastic H 2/H control with (x, u, v)-dependent noise: Finite horizon case. Automatica, 2006, 42: 1891-1898

[21]

Zhang W, Chen B, Tang H. Some remarks on stochastic H control of linear and nonlinear Itô-type differential systems, Proceedings of the 30th Chinese Control Conference, 2011

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/