Curvature estimates of hypersurfaces in the Minkowski space

Yong Huang

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 753 -764.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 753 -764. DOI: 10.1007/s11401-013-0789-5
Article

Curvature estimates of hypersurfaces in the Minkowski space

Author information +
History +
PDF

Abstract

A class of curvature estimates of spacelike admissible hypersurfaces related to translating solitons of the higher order mean curvature flow in the Minkowski space is obtained, which may offer an idea to study an open question of the existence of hypersurfaces with the prescribed higher mean curvature in the Minkowski space.

Keywords

Minkowski space / Hypersurface / Curvature estimates / Translating solitons

Cite this article

Download citation ▾
Yong Huang. Curvature estimates of hypersurfaces in the Minkowski space. Chinese Annals of Mathematics, Series B, 2013, 34(5): 753-764 DOI:10.1007/s11401-013-0789-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews B. Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Differential Equations, 1994, 2(1): 151-171

[2]

Bartnik R. Existence of maximal surfaces in asymptotically flat spacetimes. Comm. Math. Phys., 1984, 94(2): 155-175

[3]

Bartnik R, Simon L. Spacelike hypersurfaces with prescribed boundary values and mean curvature. Comm. Math. Phys., 1982, 87(1): 131-152

[4]

Bayard P. Dirichlet problem for space-like hypersurfaces with prescribed scalar curvature in ℝ n,1. Calc. Var. Partial Differential Equations, 2003, 18(1): 1-30

[5]

Caffarelli, L., Nirenberg, L. and Spruck, J., Nonlinear second order elliptic equations. IV. Starshaped compact Weingarten hypersurfaces, Current Topics in Partial Differential Equations, Kinokuniya, Tokyo, 1–26.

[6]

Caffarelli L, Nirenberg L, Spruck J. Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces. Comm. Pure Appl. Math., 1988, 41(1): 47-70

[7]

Delanoè F. The Dirichlet problem for an equation of given Lorentz-Gaussian Curvature. Ukrain. Mat. Zh., 1990, 42(12): 1704-1710 translation in Ukrainian Math. J., 42 (12), 1990, 1538–1545

[8]

Gerhardt C. H-surfaces in Lorentzian manifolds. Comm. Math. Phys., 1983, 89(4): 523-553

[9]

Gerhardt, C., Closed Weingarten hypersurfaces in space forms, Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, 71–97.

[10]

Gerhardt C. Hypersurfaces of prescribed curvature in Lorentzian manifolds. Indiana Univ. Math. J., 2000, 49(3): 1125-1153

[11]

Gerhardt C. Hypersurfaces of prescribed mean curvature in Lorentzian manifolds. Math. Z., 2000, 235(1): 83-97

[12]

Gerhardt C. Hypersurfaces of prescribed scalar curvature in Lorentzian manifolds. J. Reine Angew. Math., 2003, 554: 157-199

[13]

Gerhardt C. Curvature problems, Series in Geometry and Topology, 2006, Somerville, MA: Internat. Press

[14]

Guan B. The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature. Trans. Amer. Math. Soc., 1998, 350(12): 4955-4971

[15]

Guan B, Spruck J. Hypersurfaces of constant curvature in hyperbolic space. II. J. Eur. Math. Soc., 2010, 12(3): 797-817

[16]

Guan B, Spruck J, Szapiel M. Hypersurfaces of constant curvature in hyperbolic space. I. J. Geom. Anal., 2009, 19(4): 772-795

[17]

Guan P, Ma X N. The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation. Invent. Math., 2003, 151(3): 553-577

[18]

Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order, 1998 2nd Edition Berlin: Springer-Verlag

[19]

Huang Y, Jian H Y, Su N. Spacelike hypersurfaces of prescribed Gauss-Kronecker curvature in exterior domains. Acta Math. Sin., 2009, 25(3): 491-502

[20]

Ivochkina N M. The Dirichlet problem for the equations of curvature of order m. Leningrad Math. J., 1991, 2(3): 631-654

[21]

Sheng W, Trudinger N S, Wang X J. Convex hypersurface of prescribed Weingarten curvatures. Comm. in Analysis and Geometry, 2004, 12: 213-232

[22]

Sheng W, Urbas J, Wang X J. Interior curvature bounds for a class of curvature equations. Duke Math. J., 2004, 123: 235-264

[23]

Trudinger N S. The Dirichlet problem for the prescribed curvature equations. Arch. Rational Mech. Anal., 1990, 111: 153-179

[24]

Urbas J. Interior curvature bounds for spacelike hypersurfaces of prescribed k-th mean curvature. Comm. Anal. Geom., 2003, 11: 235-261

[25]

Urbas J. The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space. Calc. Var. Partial Differential Equations, 2003, 18: 307-316

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/