Some subsystems of a lie triple system closely related to its Frattini subsystem

Liangyun Chen , Dong Liu , Xiaoning Xu

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 791 -800.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (5) : 791 -800. DOI: 10.1007/s11401-013-0786-8
Article

Some subsystems of a lie triple system closely related to its Frattini subsystem

Author information +
History +
PDF

Abstract

The main purpose of the present paper is to give some properties of the Jacobson radical, the Frattini subsystem and c-ideals of a Lie triple system. Some further results concerning the Frattini subsystems of nilpotent and solvable Lie triple systems are obtained. Moreover, we develop initially c-ideals for a Lie triple system and make use of them to give some characterizations of a solvable Lie triple system.

Keywords

Frattini subsystem / Jacobson radical / c-ideals / Solvable / Nilpotent

Cite this article

Download citation ▾
Liangyun Chen, Dong Liu, Xiaoning Xu. Some subsystems of a lie triple system closely related to its Frattini subsystem. Chinese Annals of Mathematics, Series B, 2013, 34(5): 791-800 DOI:10.1007/s11401-013-0786-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai R P, Chen L Y, Meng D J. The Frattini subalgebra of n-Lie algebras. Acta. Math. Sin. (English Series), 2007, 33: 847-856

[2]

Barnes D W. The Frattini argument for Lie algebras. Math. Z., 1973, 133: 277-283

[3]

Benito P, Draper C, Elduque A. On some algebras related to simple Lie triple systems. J. Algebra, 1999, 219(1): 234-254

[4]

Chen L Y, Meng D J. On the intersection of maximal subalgebras in a Lie superalgebra. Algebra Colloquium, 2009, 16(3): 503-516

[5]

Chen L Y, Meng D J, Zhang Y Z. The Frattini subalgebra of restricted Lie superalgebras. Acta. Math. Sin. (English Series), 2006, 22: 1343-1356

[6]

Elduque A. A Frattini theory for malcev algebras. Algebras Groups and Geometries, 1984, 1(2): 247-266

[7]

Elduque A. On the Frattini subalgebra of a Lie-admissible algebra. Algebras Groups and Geometries, 1984, 1(2): 267-276

[8]

Hopkins N C. Nilpotent ideals in Lie and anti-Lie triple systems. J. Alg., 1995, 178: 480-492

[9]

Jacobson N. Lie Algebras, 1962, New York-London: Interscience Pubglishers

[10]

Jacobson N. Basic Algebra II, 1980, San Francisco: W. H. Freeman

[11]

Li D, Guo X. The influence of minimal subgroups on the structure of finite groups II. Comm. Alg., 1998, 26: 1913-1922

[12]

Li D, Guo X. The influence of c-normality on the structure of finite groups. J. Pure and Applied Algebra, 2000, 150: 53-60

[13]

Lincoln M, Towers D A. The Frattini subalgebra of a solvable Lie algebra. Proc. Edin. Math. Soc., 1997, 40: 31-40

[14]

Lister W G. A structure theory of Lie triple systems. Trans. Amer. Math. Soc., 1952, 72: 217-242

[15]

Marshall E I. The Frattini subalgebra of a Lie algebra. London Math. Soc., 1967, 42: 416-422

[16]

Stitzinger E L. On the Frattini subalgebra of a Lie algebras. J. London Math. Soc., 1970, 2: 429-438

[17]

Stitzinger E L. The Frattini subalgebras of a class of solvable Lie algebra. Pacific J. Math., 1970, 34: 177-182

[18]

Towers D A. A Frattini theory for algebras. Proc. London Math. Soc., 1973, 27: 440-462

[19]

Towers D A. On complemented Lie algebras. J. London Math. Soc., 1980, 22: 63-65

[20]

Towers D A. C-supplemented subalgebras of Lie algebras. J. Lie Theory, 2008, 18: 717-724

[21]

Towers D A. C-ideals of Lie algebras. Comm. Alg., 2009, 37: 4366-4373

[22]

Zhang Z X, Chen L Y, Liu W L, Bai X M. The Frattini subsystem of a Lie triple system. Comm. Alg., 2009, 37: 3750-3759

[23]

Zhang Z X, Shi Y Q, Zhao L N. Invariant symmetric bilinear forms on Lie triple systems. Comm. Alg., 2002, 30(11): 5563-5573

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/