Analytic functions related with the hyperbola

Dorina Răducanu

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 515 -528.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 515 -528. DOI: 10.1007/s11401-013-0783-y
Article

Analytic functions related with the hyperbola

Author information +
History +
PDF

Abstract

The author considers a new class $SH_{\lambda \mu }^m (\alpha )$ of normalized analytic functions defined by a differential operator. Several basic properties and characteristics of the functions belonging to the class $SH_{\lambda \mu }^m (\alpha )$ are investigated. These include integral representations, coefficient bounds, the Fekete-Szegö problem, class-preserving operators and T δ-neighborhoods.

Keywords

Analytic function / Differential operator / Hyperbolic domain / Fekete-Szegö problem / Neighborhood

Cite this article

Download citation ▾
Dorina Răducanu. Analytic functions related with the hyperbola. Chinese Annals of Mathematics, Series B, 2013, 34(4): 515-528 DOI:10.1007/s11401-013-0783-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali R M, Subramanian K G, Ravichandran V, Ahuja O P. Neighborhoods of starlike and convex functions associated with parabola. J. Inequal. Appl., 2008 346279

[2]

Al-Oboudi F M. On univalent functions defined by a generalized Sălăgean operator. Internat. J. Math. Math. Sci., 2004, 27: 1429-1436

[3]

Altintas O, Ozkan O, Srivastava H M. Neighborhoods of a certain family of multivalent functions with negative coefficients. Comput. Math. Appl., 2004, 47: 1667-1672

[4]

Barnard R W, Kellogg C. Applications of convolution operators to problems in univalent function theory. Michigan Math. J., 1980, 27(1): 81-94

[5]

Bednarz U, Sokól J. On T-neighborhoods of analytic functions. J. Math. Appl., 2010, 32: 25-32

[6]

Duren P L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 1983, New York, Berlin, Heidelberg, Tokio: Springer-Verlag

[7]

Kanas S. Coefficient estimates in subclasses of the Carathéodory class related to conic domains. Acta. Math. Univ. Comenianae, 2005, 2: 149-161

[8]

Mishra A K, Gochhayat P. Fekete-Szegö problem for k-uniformly convex functions and for a class defined by the Owa-Srivastava operator. J. Math. Anal. Appl., 2008, 347: 563-572

[9]

Mishra A K, Gochhayat P. A coefficient inequality for a subclass of Carathéodory functions defined by conical domains. Comput. Math. Appl., 2011, 61(9): 2816-2820

[10]

Orhan H, Deniz E, Răducanu D. The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains. Comput. Math. Appl., 2010, 59(1): 283-295

[11]

Răducanu D, Orhan H. Subclasses of analytic functions defined by a generalized differential operator. Int. J. Math. Anal., 2010, 4(1): 1-15

[12]

Rogosinski W. On the coefficients of subordinate functions. Proc. London Math. Soc., 1943, 48: 48-82

[13]

Ruscheweyh S, Sheil-Small T. Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture. Comment. Math. Helv., 1973, 49: 119-135

[14]

Ruscheweyh S. Neighborhoods of univalent functions. Proc. Amer. Math. Soc., 1981, 81: 521-529

[15]

Sălăgean G S. Subclasses of univalent functions, Complex Analysis, Proc. 5th Romanian-Finnish Semin., Part 1 (Bucharest, 1981), 1983 362-372

[16]

Sheil-Small T, Silvia E M. Neighborhoods of analytic functions. J. Analyse Math., 1989, 52: 210-240

[17]

Srivastava H M, Mishra A K. Applications of fractional calculus to parabolic starlike and uniformly convex functions. Comput. Math. Appl., 2000, 39(3–4): 57-69

[18]

Stankiewicz J. Neighborhoods of meromorphic functions and Hadamard products. Ann. Polon. Math., 1985, 46: 317-331

[19]

Stankiewicz J, Wiśniowska A. Starlike functions associated with some hyperbola. Zesz. Nauk. Polit. Rzesz. Mat., 1996, 19: 117-126

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/