The presentation problem of the conjugate cone of the Hardy space H p (0 < p ≤ 1)

Jianyong Wang

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 541 -556.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 541 -556. DOI: 10.1007/s11401-013-0781-0
Article

The presentation problem of the conjugate cone of the Hardy space H p (0 < p ≤ 1)

Author information +
History +
PDF

Abstract

The Hardy space H p is not locally convex if 0 < p < 1, even though its conjugate space (H p)* separates the points of H p. But then it is locally p-convex, and its conjugate cone (H p) p* is large enough to separate the points of H p. In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the p-convex analysis. This paper deals with the representation problem of the conjugate cone (H p) p * of H p for 0 < p ≤ 1, and obtains the subrepresentation theorem (H p) p *L (T, C p *).

Keywords

Locally p-convex space / Hardy space / Normed conjugate cone / Shadow cone / Subrepresentation theorem

Cite this article

Download citation ▾
Jianyong Wang. The presentation problem of the conjugate cone of the Hardy space H p (0 < p ≤ 1). Chinese Annals of Mathematics, Series B, 2013, 34(4): 541-556 DOI:10.1007/s11401-013-0781-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kalton N J, Peck N T, Roberts J W. An F-space Sampler, 1984, London: Cambridge University Press

[2]

Rolewicz S. Metric Linear Spaces, 1985, Warszawa: Polish Scientific Publishers

[3]

Duren P L. Theory of H p Spaces, 1970, New York: Academic Press

[4]

Simmons S. Boundness in linear topological spaces. Trans. Amer. Math. Soc., 1964, 113: 169-180

[5]

Jarchow H. Locally Convex Spaces, 1981, Stuttgart: B. G. Teubner

[6]

Wang J Y, Ma Y M. The second separation theorem in locally β-convex space and the boundedness theorem in its conjugate cone. J. Math. Res. Exposition, 2002, 22(1): 25-34

[7]

Wang J Y. Quasi-translation invariant topological cones and the conjugate cones of locally β-convex spaces. Math. Practice Theory, 2003, 33(1): 89-97

[8]

Wang J Y. The Hahn-Banach theorems about β-subseminorms in locally β-convex spaces and their applications. Journal of Changshu Institue of Technology, 2006, 20(4): 19-24

[9]

Diestel J, Uhl J J. Vector Measures, 1977, Providence, Rhode Island: Amer. Math. Soc.

[10]

Wang J Y. The subrepresentation theorem of the conjugate cone of lp(X) (0 < p < 1). Adv. Math., 2010, 39(6): 709-718

[11]

Halmos P R. Measure Theory, 1950, New York: Van Nostrand

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/