Nonexistence of a globally stable supersonic conic shock wave for the steady supersonic isothermal Euler flow

Yuchen Li , Gang Xu

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 557 -574.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 557 -574. DOI: 10.1007/s11401-013-0780-1
Article

Nonexistence of a globally stable supersonic conic shock wave for the steady supersonic isothermal Euler flow

Author information +
History +
PDF

Abstract

In this paper, for the full Euler system of the isothermal gas, we show that a globally stable supersonic conic shock wave solution does not exist when a uniform supersonic incoming flow hits an infinitely long and curved sharp conic body.

Keywords

Supersonic flow / Conic shock / Full Euler system / Isothermal gas / Nonexistence

Cite this article

Download citation ▾
Yuchen Li, Gang Xu. Nonexistence of a globally stable supersonic conic shock wave for the steady supersonic isothermal Euler flow. Chinese Annals of Mathematics, Series B, 2013, 34(4): 557-574 DOI:10.1007/s11401-013-0780-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alinhac S. Temps de vie des solutions rgulires des quations d’Euler compressibles axisymtriques en dimension deux. Invent. Math., 1993, 111(3): 627-670

[2]

Chen G Q, Li T H. Well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge. J. Differential Equations, 1965, 244(6): 1521-1550

[3]

Chen G Q, Zhang Y Q, Zhu D W. Existence and stability of supersonic Euler flows past Lipschitz wedges. Arch. Ration. Mech. Anal., 2006, 181(2): 261-310

[4]

Chen S X. A free boundary value problem of Euler system arising in supersonic flow past a curved cone. Tohoku Math. J., 2002, 54(1): 105-120

[5]

Chen S X, Li D L. Conical shock waves for an isentropic Euler system. Proc. Roy. Soc. Edinburgh Sect. A, 2005, 135(6): 1109-1127

[6]

Chen S X, Xin Z P, Yin H C. Global shock wave for the supersonic flow past a perturbed cone. Comm. Math. Phys., 2002, 228: 47-84

[7]

Courrant R, Friedrichs K O. Supersonic Flow and Shock Waves, 1948, New York: Interscience Publishers Inc.

[8]

Cui D C, Yin H C. Global conic shock wave for the steady supersonic flow past a cone: Isothermal case. Pacific J. Math., 2007, 233: 257-289

[9]

Cui D C, Yin H C. Global conic shock wave for the steady supersonic flow past a cone: Polytropic case. J. Differential Equations, 2009, 246: 641-669

[10]

Godin P. Long time existence of a class of perturbations of planar shock fronts for second order hyperbolic conservation laws. Duke Math. J., 1990, 60(2): 425-463

[11]

Godin P. Global shock waves in some domains for the isentropic irrotational potential flow equations. Comm. P. D. E., 1997, 22(11–12): 1929-1997

[12]

Godin P. The lifespan of a class of smooth spherically symmetric solutions of the compressible Euler equations with variable entropy in three space dimensions. Arch. Ration. Mech. Anal., 2005, 177(3): 479-511

[13]

John F, Friedrichs K O. Nonlinear Wave Equations, Formation of Singularities, 1990, Providence, RI: American Mathematical Society

[14]

Li T. On a free boundary problem. Chin. Ann. Math., 1980, 1: 351-358

[15]

Lien W C, Liu T P. Nonlinear stability of a self-similar 3-dimensional gas flow. Comm. Math. Phys., 1999, 204: 525-549

[16]

Majda A. Compressible fluid flow and systems of conservation laws, 1984, New York: Springer-Verlag

[17]

Majda A, Thomann E. Multi-dimensional shock fronts for second order wave equations. Comm. P. D. E., 1987, 12: 777-828

[18]

Schaeffer D G. Supersonic flow past a nearly straight wedge. Duke Math. J., 1976, 43: 637-670

[19]

Sideris T C. Delayed singularity formation in 2D compressible flow. Amer. J. Math., 1976, 119(2): 371-422

[20]

Sideris T C. Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys., 1985, 101(4): 475-485

[21]

Sideris T C. The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math. J., 1991, 40(2): 535-550

[22]

Smoller J A. Shock Waves and Reaction-Diffusion Equations, 1984, New York: Springer-Verlag

[23]

Xin Z P, Yin H C. Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone. Analysis and Applications, 2006, 4(2): 101-132

[24]

Xu G, Yin H C. Instability of a global transonic shock wave for the steady supersonic Euler flow past a sharp cone. Nagoya Math. J., 2010, 199: 151-181

[25]

Xu G, Yin H C. Nonexistence of a globally stable supersonic conic shock wave for the steady supersonic Euler flow past a perturbed cone. Quar. Appl. Math., 2012, 70: 199-218

[26]

Yin H C. Formation and construction of a shock wave for 3-D compressible Euler equations with the spherical initial data. Nagoya Math. J., 2004, 175: 125-164

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/